Natural Selection Adaptation Unit 9 7 C Natural

  • Slides: 79
Download presentation
Natural Selection & Adaptation Unit 9 7 C

Natural Selection & Adaptation Unit 9 7 C

Natural Selection • Gradual process by which biological traits become either more or less

Natural Selection • Gradual process by which biological traits become either more or less common in a population

Nature basically “selects” certain individuals to be successful and reproduce and over time the

Nature basically “selects” certain individuals to be successful and reproduce and over time the population changes due to this selection.

What has happened to the mice population below? The population has changed from 50%

What has happened to the mice population below? The population has changed from 50% brown & 50% white to 80% white & 20% brown. WHY?

Adaptations Cause Fitness • Adaptation – any inherited characteristic that increases an organism’s chance

Adaptations Cause Fitness • Adaptation – any inherited characteristic that increases an organism’s chance of survival. (Remember the source of any new trait is a mutation. ) • Adaptations make an organism better suited to the environment. So in the struggle for survival, organisms with adaptations suited to the environment will be more likely to survive and reproduce.

 • Fit offspring then survive and reproduce and even more offspring are “born”

• Fit offspring then survive and reproduce and even more offspring are “born” that have the adaptation. • Over generations, the DNA in the whole population changes, so that all the population has the adaptation that makes the population fit for its environment.

Fitness • The ability of an organism to survive and reproduce

Fitness • The ability of an organism to survive and reproduce

If fitness is the ability to survive & reproduce Which lion is more fit?

If fitness is the ability to survive & reproduce Which lion is more fit?

This lion will hunt for more food, have the energy to reproduce, and pass

This lion will hunt for more food, have the energy to reproduce, and pass on his genes to his offspring.

Traits that help an organism survive 1. 2. 3. 4. Survive a predator Survive

Traits that help an organism survive 1. 2. 3. 4. Survive a predator Survive disease Compete for food Compete for territory

Traits that help individuals reproduce • Attracting a mate • Compete for nesting sites

Traits that help individuals reproduce • Attracting a mate • Compete for nesting sites • Successfully raising young

“Survival of the Fittest” • Faster, stronger, good hunter, better camouflaged • Best organism

“Survival of the Fittest” • Faster, stronger, good hunter, better camouflaged • Best organism that survives and reproduces

Mesquite have the longest tap root of any desert species

Mesquite have the longest tap root of any desert species

Adaptation • Any characteristic that increases fitness

Adaptation • Any characteristic that increases fitness

Types of Selection

Types of Selection

Types of Selection Disruptive Selection • Describes changes in population genetics in which extreme

Types of Selection Disruptive Selection • Describes changes in population genetics in which extreme values for a trait are favored over medium values. • The variance of the trait increases and the population is divided into 2 distinct groups.

Types of Selection Stabilizing Selection • Genetic decreases as the population stabilizes on a

Types of Selection Stabilizing Selection • Genetic decreases as the population stabilizes on a particular trait or value. It varies medium traits. “Average Joe wins” • Opposite of disruptive selection.

Types of Selection Directional Selection • A single phenotype is favored, causing the allele

Types of Selection Directional Selection • A single phenotype is favored, causing the allele frequency to continuously shift in 1 direction. • Occurs under environmental changes when populations migrate to new areas with different environmental pressures.

Natural Selection Summary Points • Inherited variation – there are genetic variations (differences) between

Natural Selection Summary Points • Inherited variation – there are genetic variations (differences) between individuals of a population • The more genetic diversity, the more variations of alleles that are suited for the environment. The more offspring will survive and reproduce. • The population will then continue.

Natural Selection Summary Points • Overproduction of offspring – there are more offspring are

Natural Selection Summary Points • Overproduction of offspring – there are more offspring are produced than can survive • Struggle for existence – there is competition for survival among the members of the population

Witness to Evolution • Peppered Moth – 2 types: dark vs. light Peppered moth

Witness to Evolution • Peppered Moth – 2 types: dark vs. light Peppered moth

Peppered moth • Why did the population change? – early 1800 s = pre-industrial

Peppered moth • Why did the population change? – early 1800 s = pre-industrial England • low pollution • lichen on trees = light colored bark – late 1800 s = industrial • factories = soot coated trees • killed lichen = dark colored bark – mid 1900 s = pollution controls • clean air laws • return of lichen = light colored bark

Peppered moth: Evolution in action Year 1848 1895 1995 % dark 5 98 19

Peppered moth: Evolution in action Year 1848 1895 1995 % dark 5 98 19 % light 95 2 81 clean air, light-colored bark pollution, dark-colored bark Clean Air Act, light-colored bark industrial melanism

Natural Selection & Fitness Unit 9 7 D

Natural Selection & Fitness Unit 9 7 D

Genetic or Inherited Variation • variation in alleles of genes that occurs both within

Genetic or Inherited Variation • variation in alleles of genes that occurs both within and among populations

What determines these different traits or variations? • Mutations in our DNA • crossing

What determines these different traits or variations? • Mutations in our DNA • crossing over & independent assortment in meiosis.

Let’s remember… • Genotype is the individuals set of alleles for a trait… BB,

Let’s remember… • Genotype is the individuals set of alleles for a trait… BB, Bb, or bb • Phenotype is the appearance or expression of the trait… Homozygous black, heterozygous black, or homozygous brown

36% 16% 48% Bb heterozygous black BB homozygous black bb homozygous brown

36% 16% 48% Bb heterozygous black BB homozygous black bb homozygous brown

 • 64% of the total mouse population has black fur • The black

• 64% of the total mouse population has black fur • The black allele (B) occurs 40% of the time while the brown allele (b) occurs 60% of the time. • The brown allele occurs more frequently than the black. What change in the habitat could change the frequency of alleles?

Elements of Natural Selection 1. Inherited Variation 2. Producing More offspring than can survive

Elements of Natural Selection 1. Inherited Variation 2. Producing More offspring than can survive 3. Limited (finite) supply of Environmental Resources

1. Inherited Variation • In an environment that favors black fur, mice with brown

1. Inherited Variation • In an environment that favors black fur, mice with brown fur will be eaten, and the frequency of the allele for brown fur (b) will decrease. Black mice will have a better chance of surviving and passing on their alleles to their offspring.

The frequency for the while allele in the mouse population below will decrease.

The frequency for the while allele in the mouse population below will decrease.

2. Producing More offspring than can survive • Most populations produce more offspring than

2. Producing More offspring than can survive • Most populations produce more offspring than can survive. Many offspring are lost due to predation, starvation, etc… The offspring that do survive to adulthood will have phenotypes that give them an advantage within that environment over those that didn’t survive & reproduce.

3. Limited (finite) Supply of Resources • Individuals compete for food, water, space, &

3. Limited (finite) Supply of Resources • Individuals compete for food, water, space, & shelter. • When resources become scarce, such as during a drought, competition increases. Populations decline, and the individual with advantageous traits will survive and reproduce.

The ground finches with larger beaks can eat a wider variety of seeds &

The ground finches with larger beaks can eat a wider variety of seeds & nuts. If a drought occurs, the finches with smaller beaks will run out of food & the population of finches with larger beaks will increase.

Natural Selection & Diversity Unit 9 7 E

Natural Selection & Diversity Unit 9 7 E

Speciation • the evolutionary process by which new biological species arise

Speciation • the evolutionary process by which new biological species arise

Remember… • Every species has different DNA. • Species can breed and produce fertile

Remember… • Every species has different DNA. • Species can breed and produce fertile offspring.

 • How has this population changed over time? Body has become red with

• How has this population changed over time? Body has become red with spots

 • What has caused this change? Mutations with redder body & blacker spots

• What has caused this change? Mutations with redder body & blacker spots have been beneficial & allowed these insects to survive and reproduce. The mutations in the nucleotide sequences have now changed the DNA and a new species has evolved.

How do new species evolve?

How do new species evolve?

Adaptation Due to natural selection, individuals with adaptations that give them an advantage over

Adaptation Due to natural selection, individuals with adaptations that give them an advantage over other individuals in the same environment are more likely to produce and pass the adaptations to their offspring. If the adaptation (mutation) continues to be beneficial, over time, the trait is passed on to generations, and a larger portion of the population with have that adaptation.

Diversity in a Species Let’s remember, individuals within a species are genetically different.

Diversity in a Species Let’s remember, individuals within a species are genetically different.

If the snow & ice melt, will this polar be able to grow thin

If the snow & ice melt, will this polar be able to grow thin brown fur? NO!

But if a few mutated polar bears are born with thin, brown fur…

But if a few mutated polar bears are born with thin, brown fur…

Diversity among Species • The process of natural selection and other mechanisms of evolution

Diversity among Species • The process of natural selection and other mechanisms of evolution have lead to the millions of species of living organisms living on Earth today and millions of different species that lived in the past.

How does speciation occur? Originally, there was 1 species of tortoise on 1 of

How does speciation occur? Originally, there was 1 species of tortoise on 1 of the Islands.

How does speciation occur? • An event occurred, like a storm, that stranded some

How does speciation occur? • An event occurred, like a storm, that stranded some tortoises on another island. These individuals started a new population in a different environment. • Over time, mutations occurred, & the genetic variation increased so the 2 populations couldn’t mate & produce fertile offspring and were now 2 separate species.

How does speciation occur? Now, each island has at least 1 different species of

How does speciation occur? Now, each island has at least 1 different species of tortoise.

Reproductive Isolation • occurs when two populations cannot interbreed and a new species is

Reproductive Isolation • occurs when two populations cannot interbreed and a new species is formed (speciation occurs).

 • A single species has evolved through natural selection into new and different

• A single species has evolved through natural selection into new and different species

Things that CAN (but don’t always) cause reproductive isolation: 1. Habitat isolation 2. Behavioral

Things that CAN (but don’t always) cause reproductive isolation: 1. Habitat isolation 2. Behavioral isolation 3. Geographic isolation 4. Temporal isolation

Habitat Isolation • 2 populations breed in different areas of a habitat • Ex.

Habitat Isolation • 2 populations breed in different areas of a habitat • Ex. snakes that breed in the water vs. the land

Habitat Isolation (a) Water-dwelling Thamnophis Terrestrial Thamnophis

Habitat Isolation (a) Water-dwelling Thamnophis Terrestrial Thamnophis

Behavioral Isolation • 2 populations can breed, but behavior causes them not to. •

Behavioral Isolation • 2 populations can breed, but behavior causes them not to. • Ex. Eastern & Western meadowlarks using 2 different songs to attract mates

http: //bio 1100. nicerweb. com/sketches/sounds/Chordata/Aves/Melospiza_m elodia. mp 3

http: //bio 1100. nicerweb. com/sketches/sounds/Chordata/Aves/Melospiza_m elodia. mp 3

Behavioral Isolation Courtship ritual of different populations of Blue-Footed Boobies

Behavioral Isolation Courtship ritual of different populations of Blue-Footed Boobies

Geographic Isolation • 2 populations are separated by a geographic barrier (river, mountain, etc.

Geographic Isolation • 2 populations are separated by a geographic barrier (river, mountain, etc. ). • Ex. Colorado River separated squirrels

Geographic Isolation

Geographic Isolation

Geographic Isolation

Geographic Isolation

Geographic Isolation

Geographic Isolation

Temporal Isolation • 2 populations breed at different times. • Ex. orchids that pollinates

Temporal Isolation • 2 populations breed at different times. • Ex. orchids that pollinates once a year

Wood & Leopard Frog

Wood & Leopard Frog