NANOTECHNOLOGY Part 3 Optics Microoptics NearField Optics Scanning

  • Slides: 23
Download presentation
NANOTECHNOLOGY Part 3. Optics • • Micro-optics Near-Field Optics Scanning Near-Field Optical Microscopy Surface

NANOTECHNOLOGY Part 3. Optics • • Micro-optics Near-Field Optics Scanning Near-Field Optical Microscopy Surface Plasmons J. R. Krenn – Nanotechnology – CERN 2003 – Part 3 page 1

Micro-Optics www. photonics. ucla. edu J. R. Krenn – Nanotechnology – CERN 2003 –

Micro-Optics www. photonics. ucla. edu J. R. Krenn – Nanotechnology – CERN 2003 – Part 3 page 2

Far-Field vs. Near-Field Helmholtz eq. => propagating: evanescent: J. R. Krenn – Nanotechnology –

Far-Field vs. Near-Field Helmholtz eq. => propagating: evanescent: J. R. Krenn – Nanotechnology – CERN 2003 – Part 3 page 3

The Dipole Field www. sm. luth. se/~urban/master/Theory/3. html dl is the length of the

The Dipole Field www. sm. luth. se/~urban/master/Theory/3. html dl is the length of the current element, y is short for (2 p f/l)-w t w signal frequency, t is the time (=1/f), c is the speed of light Z 0 free space impedance, I is the current in the element q is the zenith angle to radial distance r, l wavelength of the signal r distance from the element to point of observation hyperphysics. phy-astr. gsu. edu/ J. R. Krenn – Nanotechnology – CERN 2003 – Part 3 page 4

Near-Field Theory • We have to solve the full set of Maxwell's equations. •

Near-Field Theory • We have to solve the full set of Maxwell's equations. • Brute force limits applicability due to computing time restrictions. • Complex geometries call for discretization in direct space. • Green's Dyadic Technique, Discrete Dipole Approximation • Finite Difference Time Domain Problems • combining µm-scale structures (e. g. , substrates, waveguides) and nm-structures • including measurement process J. R. Krenn – Nanotechnology – CERN 2003 – Part 3 page 5

Scanning Near-Field Optical Microscope (1) 'aperture' 'scatterer' tnweb. tn. utwente. nl J. R. Krenn

Scanning Near-Field Optical Microscope (1) 'aperture' 'scatterer' tnweb. tn. utwente. nl J. R. Krenn – Nanotechnology – CERN 2003 – Part 3 page 6

SNOM (2) Operation modes of scatter-type SNOM's E 2 Photon Scanning Tunneling Microscope (PSTM)

SNOM (2) Operation modes of scatter-type SNOM's E 2 Photon Scanning Tunneling Microscope (PSTM) J. R. Krenn – Nanotechnology – CERN 2003 – Part 3 page 7

SNOM (3) Scatter-type near-field microscopy: Tip enhancement =>Tip enhanced Raman and fluorescence spectroscopy 1

SNOM (3) Scatter-type near-field microscopy: Tip enhancement =>Tip enhanced Raman and fluorescence spectroscopy 1 µm Left: Near-field Raman image at 2615 cm-1 (exc. 633 nm) of SWNT's acquired with a silver tip; Right: topography Distance dependence of Raman signal A. Hartschuh et al. , PRL. 90, 095503 (2003) J. R. Krenn – Nanotechnology – CERN 2003 – Part 3 page 8

SNOM (4) Operation modes of aperture-type SNOM's illumination M. A. Paesler, P. J. Moyer,

SNOM (4) Operation modes of aperture-type SNOM's illumination M. A. Paesler, P. J. Moyer, in total internal Near-Field Optics, Wiley, New York, 1996 reflection J. R. Krenn – Nanotechnology – CERN 2003 – Part 3 page 9

SNOM (5) 100 x 50 nm Au Experimental SNOM images, polarization directions along (a)

SNOM (5) 100 x 50 nm Au Experimental SNOM images, polarization directions along (a) x and (b) y, (c), (d) corresponding LDOS calculations C. Chicanne et al. , PRL 88, 097402 (2002) J. R. Krenn – Nanotechnology – CERN 2003 – Part 3 page 10

SNOM (6) pol. Single molecule detection Near-field lithography courtesy N. van Hulst, Univ. Twente

SNOM (6) pol. Single molecule detection Near-field lithography courtesy N. van Hulst, Univ. Twente UV mediated crosslinking in PPV courtesy of R. Riehn, Univ. Cambridge J. R. Krenn – Nanotechnology – CERN 2003 – Part 3 page 11

Dielectric Nanoparticles Topography TE TM PSTM images of glass nanopads J. C. Weeber et

Dielectric Nanoparticles Topography TE TM PSTM images of glass nanopads J. C. Weeber et al. , Phys. Rev. Lett. 77, 5332 (1996) J. R. Krenn – Nanotechnology – CERN 2003 – Part 3 page 12

The British Museum Metal Nanoparticles (1) J. R. Krenn – Nanotechnology – CERN 2003

The British Museum Metal Nanoparticles (1) J. R. Krenn – Nanotechnology – CERN 2003 – Part 3 page 13

Metal Nanoparticles (2) 500 nm AFM PSTM THEORIE J. R. Krenn et al. ,

Metal Nanoparticles (2) 500 nm AFM PSTM THEORIE J. R. Krenn et al. , Phys. Rev. Lett. 82, 2590 (1999) J. R. Krenn – Nanotechnology – CERN 2003 – Part 3 page 14

Subwavelength Optical Elements (1) LIGHT SOURCES DETECTORS APERTURES zinc oxide 100 nm wire laser

Subwavelength Optical Elements (1) LIGHT SOURCES DETECTORS APERTURES zinc oxide 100 nm wire laser Michael H. Huang et al. , Science 292, 1897 (2001) optical near-field of VCSEL Swiss Federal Institute of Technology at Lausanne courtesy O. Marti, Univ. Ulm quantum dots 15 µm biomolecular det. T. Thio et al. , Physica B 279, 90 (2000) J. R. Krenn – Nanotechnology – CERN 2003 – Part 3 page 15

Subwavelength Optical Elements (2) PHOTONIC CRYSTALS WAVEGUIDES iapnt. iap. uni-jena. de www. bath. ac.

Subwavelength Optical Elements (2) PHOTONIC CRYSTALS WAVEGUIDES iapnt. iap. uni-jena. de www. bath. ac. uk Ti. O 2 (R. Quidant, Univ. Dijon) Gold (Univ. Graz) J. R. Krenn – Nanotechnology – CERN 2003 – Part 3 page 16

Surface Plasmons (1) + 1 or 2 - dimensional + "non diffraction limited" +

Surface Plasmons (1) + 1 or 2 - dimensional + "non diffraction limited" + near – field enhancement + spectral selectivity + temporal dynamics ~ 10 fs – high damping – interfacing J. R. Krenn – Nanotechnology – CERN 2003 – Part 3 page 17

Surface Plasmons (2) Spreeta, Texas Instruments www. ti. com (Bio)molecule detection www. uni-ulm. de

Surface Plasmons (2) Spreeta, Texas Instruments www. ti. com (Bio)molecule detection www. uni-ulm. de J. R. Krenn – Nanotechnology – CERN 2003 – Part 3 page 18

Surface Plasmons (3) PSTM of locally excited surface plasmons Enhanced optical transmission P. Dawson

Surface Plasmons (3) PSTM of locally excited surface plasmons Enhanced optical transmission P. Dawson et al. , Phys. Rev. Lett. 72, 2927 (1994) E. Altewischer et al. , Nature 418, 304 (2002) originally revealed by T. Ebbessen et al. , ISIS, Strasbourg J. R. Krenn – Nanotechnology – CERN 2003 – Part 3 page 19

Fluorescence Imaging of SP's Rhodamin 6 G l. Amax = 530 nm, l. Emax

Fluorescence Imaging of SP's Rhodamin 6 G l. Amax = 530 nm, l. Emax = 570 nm 'Di. R' l. Amax = 750 nm, l. Emax = 790 nm 10 µm 20 µm Ditlbacher et al. , APL 80, 404 (2002); APL 84, 1762 (2002) J. R. Krenn – Nanotechnology – CERN 2003 – Part 3 page 20

SP Mirror & Beamsplitter SP Bragg Mirror 10 µm 20 µm SP Beamsplitter 10

SP Mirror & Beamsplitter SP Bragg Mirror 10 µm 20 µm SP Beamsplitter 10 µm 20 µm J. R. Krenn – Nanotechnology – CERN 2003 – Part 3 page 21

SP Interferometer H. Ditlbacher et al. , APL 84, 1762 (2002) 10 µm Featured

SP Interferometer H. Ditlbacher et al. , APL 84, 1762 (2002) 10 µm Featured in The Economist 43/2002 J. R. Krenn – Nanotechnology – CERN 2003 – Part 3 page 22

(Some kind of) Conclusion M. A. Paesler, P. J. Moyer, Near-Field Optics, Wiley, New

(Some kind of) Conclusion M. A. Paesler, P. J. Moyer, Near-Field Optics, Wiley, New York, 1996 [1] = D. W. Pohl, in Advances in Optical and Electron Microscopy, eds. C. J. R. Sheppard and T. Mulvey, Academic Press, London 1991 J. R. Krenn – Nanotechnology – CERN 2003 – Part 3 page 23