Multivarietal genomic selection in French pig populations Cline

  • Slides: 19
Download presentation
Multi-varietal genomic selection in French pig populations Céline Carillier-Jacquin Llibertat Tusell Palomero Juliette Riquet

Multi-varietal genomic selection in French pig populations Céline Carillier-Jacquin Llibertat Tusell Palomero Juliette Riquet Marie-José Mercat Catherine Larzul INRA-Gen. Phy. SE, Toulouse, France 67 th EAAP meeting, 31 August 2016, Belfast, Northern Ireland . 01

Context • Small population size = lower GEBV accuracy • Nucleus from different breeding

Context • Small population size = lower GEBV accuracy • Nucleus from different breeding organizations > same breed but different populations • Including animals from a biggest population to small one = multivarietal genomic evaluation • Objective : look if multi-varietal evaluation could improve accuracy. 02

Data collection • 3 varieties of Piétrain pig genotyped: - V 2 and V

Data collection • 3 varieties of Piétrain pig genotyped: - V 2 and V 3 have limited population size Sires Offspring V 1 96 752 V 2 13 118 V 3 17 177 • Test multi-varietal genomic evaluations: V 1+V 2 and V 1+V 3. 03

Single step genomic evaluation • Single step genomic evaluation using blupf 90 program •

Single step genomic evaluation • Single step genomic evaluation using blupf 90 program • Phenotype of 3 varieties considered as the same trait • Genetic parameter used = estimated in V 1 • 60 traits measured (production, blood and hormonal parameters, skin lesions) h² Growth rate 0. 6 Feed conversion ratio 0. 4 Androstenone 0. 6 Total number of skin lesions 0. 3. 04

Estimation of prediction ability • 4 - fold cross validation • In 7 cases

Estimation of prediction ability • 4 - fold cross validation • In 7 cases : Reference population V 1 V 2 V 3 V 1+V 2 V 1 + V 3 V 1+V 3 Validation set V 1 sires V 2 sires V 3 sires V 1 sires V 2 sires V 1 sires V 3 sires • Prediction ability = corr(GEBVpred, GEBVtrue) for validation set • Total prediction ability = mean of the 4 prediction abilities. 05

0, 70 0. 70 V 2 0, 70 0. 70 V 3 0, 60

0, 70 0. 70 V 2 0, 70 0. 70 V 3 0, 60 0. 60 V 1+V 2 0, 60 0. 60 V 1+V 3 0, 50 0. 50 Prediction ability 0, 50 0, 40 0, 30 0. 20 0, 10 0. 00 0, 40 0, 30 0, 20 0, 10 0. 10 on ne le si no ki n ls to ta dr er nv co ed fe an si on w ro G os te ra ra th le si ki n ls to Sires V 2 tio te on ne no dr os te ta nv fe ed co an er ro w si on th ra ra tio te 0. 00 0, 00 G Prediction ability for V 2 and V 3 sires Sires V 3. 06

accuracy Prediction ability for V 1 sires 0. 70 0, 70 V 1 0.

accuracy Prediction ability for V 1 sires 0. 70 0, 70 V 1 0. 60 0, 60 V 1+V 3 0. 50 0, 50 V 1+V 2 0. 40 0, 40 0. 30 0, 30 0. 20 0, 20 0. 10 0, 10 0. 00 0, 00 Growth rate feed conversion ratio androstenone total skin lesion Sires V 1 with the largest reference population size. 07

Estimation of theoretical accuracy Single-varietal reference population (V 2) (V 1) (V 3) phenotypes

Estimation of theoretical accuracy Single-varietal reference population (V 2) (V 1) (V 3) phenotypes Offspring genotypes (V 1) (V 3) Sires (V 2) pedigree genotypes genomic evaluation GEBV and PEV . 08

Estimation of theoretical accuracy multi-varietal reference population phenotypes Offspring (V 1+V 2) (V 1+V

Estimation of theoretical accuracy multi-varietal reference population phenotypes Offspring (V 1+V 2) (V 1+V 3) genotypes Sires (V 1+V 3) (V 1+V 2) pedigree genotypes genomic evaluation GEBV and PEV . 09

V 2 0, 70 0, 60 0. 60 V 1+V 2 0, 60 0.

V 2 0, 70 0, 60 0. 60 V 1+V 2 0, 60 0. 50 0, 50 0. 40 0, 40 0. 30 0, 30 0. 20 0, 20 0. 10 0, 10 V 3 V 1+V 3 0, 50 0, 40 0, 30 0. 20 0, 20 0. 10 0, 10 on ne si le ki n ls ta to an er s fe ed co nv G dr io n os te ra no tio te th ro w le ki n ls to Sires V 2 ra on si no os te dr ed fe ta nv co an er ro w si on th ra ra tio ne 0. 00 0, 00 theoritical accuracy 0, 70 0. 70 G theoretical accuracy Similar results for theoretical accuracies of sires Sires V 3. 010

Multi-varietal genomic evaluation could improve accuracies • Improvement in prediction ability: - from +1.

Multi-varietal genomic evaluation could improve accuracies • Improvement in prediction ability: - from +1. 6% to +322% for V 3 sires from +1. 2% to +261% for V 2 sires kinship coeff(V 1 and V 3) = 12% kinship coeff(V 1 and V 2) = 8% enhancement proportional to the degree of relatedness • No improvement/degradation for V 1 sires Multi-varietal evaluation improve accuracy for small populations. 011

Thank you for your attention! - Utopige fundings SELGEN - Bioporc (ADN, Choice Genetics

Thank you for your attention! - Utopige fundings SELGEN - Bioporc (ADN, Choice Genetics France, Gene +, Nucleus) - IFIP and Le Rheu test station staff - Ignacy Misztal for blupf 90 suite of programs. 012

Traits recorded Back fat thickness Muscle thickness Daily feed intake Ph in semimembranosus Ph

Traits recorded Back fat thickness Muscle thickness Daily feed intake Ph in semimembranosus Ph in LD* Drip loss Dressing yield Total On right part On left part On front part Number of lesion on carcass On rear part LD*: Longissimus dorsi GM*: Gluteus Medius h² 0. 6 0. 3 0. 4 0. 2 0. 1 0. 5 0. 6 0. 03 0. 02 0. 12 0. 3 Red indices in GM* Red indices in GS* Red indices in LD* Yellow indices in GM* Yellow indices in GS* Yellow indices in LD* Lightness in GM* Lightness in GS* Lightness in LD* Back fat weight Percent of ham cut Belly weight Percent of loin Percent of shoulder GS*: Gluteus superficialis h² 0. 5 0. 6 0. 7 0. 6 0. 1 0. 5 0. 1 0. 7 0. 2 0. 8 0. 5 0. 3 . 013

Traits recorded Blood volume C-Reactive protein Pig map* Estradiol level Hematocrit Blood count Indole

Traits recorded Blood volume C-Reactive protein Pig map* Estradiol level Hematocrit Blood count Indole level Number of leucocytes Intramuscular fat number of lymphocytes Number of pellets Skatol level Testosterone level Volume of pellets h² 0. 9 0. 3 0. 2 0. 3 0. 4 0. 2 0. 7 0. 2 0. 4 0. 2 0. 3 0. 6 Number of lesion at the beginning of growing Total on one side Total on the other side h² 0. 2 0. 1 Total on front part 0. 1 Total on rear part Total on one side 0. 2 0. 1 Number of lesion Total on the other side at the end of Total on front part growing Total on rear part Pig map* : Pig acute phase protein 0. 1 0. 2 0. 3 . 014

4 -fold cross validation Single breed reference population Sires of gp 1 Sires of

4 -fold cross validation Single breed reference population Sires of gp 1 Sires of gp 2 Sires of gp 3 Sires of gp 4 offsping genotypes genotypes + phenotypes Genomic evaluation Validation Sires of gp 1 Validation Sires of gp 2 Validation Sires of gp 3 Validation Sires of gp 4 corr(GEBVpred. GEBVtrue) Total prediction ability = mean of the 4 prediction abilities. 015

4 -fold cross validation Reference population V 1+V 2 Sires V 1 gp 1

4 -fold cross validation Reference population V 1+V 2 Sires V 1 gp 1 genotypes offsping population V 1 Sires V 1 gp 3 Sires V 1 gp 2 genotypes offsping Sires V 1 gp 4 genotypes offsping geno + pheno Sires V 2 gp 1 population V 2 Sires V 2 gp 3 Sires V 2 gp 4 genotypes offsping geno+pheno Genomic evaluation Validation Sires V 1 of gp 1 Validation Sires V 1 of gp 2 Validation Sires V 1 of gp 3 Validation Sires V 1 of gp 4 corr(GEBVpred. GEBVtrue) Total prediction ability (sire V 1) = mean of the 4 prediction abilities. 016

4 -fold cross validation Reference population V 1+V 2 Sires V 1 gp 1

4 -fold cross validation Reference population V 1+V 2 Sires V 1 gp 1 genotypes offsping population V 1 Sires V 1 gp 3 Sires V 1 gp 2 genotypes offsping Sires V 1 gp 4 genotypes offsping geno + pheno Sires V 2 gp 1 population V 2 Sires V 2 gp 3 Sires V 2 gp 4 genotypes offsping geno+pheno Genomic evaluation Validation Sires V 2 of gp 1 Validation Sires V 2 of gp 2 Validation Sires V 2 of gp 3 Validation Sires V 2 of gp 4 corr(GEBVpred. GEBVtrue) Total prediction ability (sire V 2) = mean of the 4 prediction abilities. 017

4 -fold cross validation Reference population V 1+V 3 Sires V 1 gp 1

4 -fold cross validation Reference population V 1+V 3 Sires V 1 gp 1 genotypes offsping population V 1 Sires V 1 gp 3 Sires V 1 gp 2 genotypes offsping Sires V 1 gp 4 genotypes offsping geno + pheno Sires V 3 gp 1 population V 3 Sires V 3 gp 2 Sires V 3 gp 3 Sires V 3 gp 4 genotypes offsping geno+pheno Genomic evaluation Validation Sires V 1 of gp 1 Validation Sires V 1 of gp 2 Validation Sires V 1 of gp 3 Validation Sires V 1 of gp 4 corr(GEBVpred. GEBVtrue) Total prediction ability (sire V 1) = mean of the 4 prediction abilities. 018

4 -fold cross validation Reference population V 1+V 3 Sires V 1 gp 1

4 -fold cross validation Reference population V 1+V 3 Sires V 1 gp 1 genotypes offsping population V 1 Sires V 1 gp 3 Sires V 1 gp 2 genotypes offsping Sires V 1 gp 4 genotypes offsping geno + pheno Sires V 3 gp 1 population V 3 Sires V 3 gp 2 Sires V 3 gp 3 Sires V 3 gp 4 genotypes offsping geno+pheno Genomic evaluation Validation Sires V 3 of gp 1 Validation Sires V 3 of gp 2 Validation Sires V 3 of gp 3 Validation Sires V 3 of gp 4 corr(GEBVpred. GEBVtrue) Total prediction ability (sire V 3) = mean of the 4 prediction abilities. 019