Multiple Comparisons Multiple Comparisons v Multiple Range Tests







![Orthogonality ci = 0 [c 1 i x c 2 i] = 0 -1 Orthogonality ci = 0 [c 1 i x c 2 i] = 0 -1](https://slidetodoc.com/presentation_image/da7f13a9cfb8c40206bf73a1de92b693/image-8.jpg)


![S. Sq = [ ci x Yi]/[n 2 ci ] S. Sq(1) [(-1)64. 1+(-1)76. S. Sq = [ ci x Yi]/[n 2 ci ] S. Sq(1) [(-1)64. 1+(-1)76.](https://slidetodoc.com/presentation_image/da7f13a9cfb8c40206bf73a1de92b693/image-11.jpg)
![S. Sq(2) [(-1)x 64. 1+(+1) x 76. 6]2/(3 x 2) 26. 04 S. Sq(3) S. Sq(2) [(-1)x 64. 1+(+1) x 76. 6]2/(3 x 2) 26. 04 S. Sq(3)](https://slidetodoc.com/presentation_image/da7f13a9cfb8c40206bf73a1de92b693/image-12.jpg)






![S. Sq(1)= [(-3)130+(-3)124+(2)141+(2)186+(2)119]2 /n ci 2 1302/(4 x 40) = 140. 8 S. Sq(2)= S. Sq(1)= [(-3)130+(-3)124+(2)141+(2)186+(2)119]2 /n ci 2 1302/(4 x 40) = 140. 8 S. Sq(2)=](https://slidetodoc.com/presentation_image/da7f13a9cfb8c40206bf73a1de92b693/image-19.jpg)




![S. Sq(1)= [(-3)130+(-3)124+(2)141+(2)186+(2)119]2 /n ci 2 1302/(4 x 40) = 140. 8 S. Sq(2)= S. Sq(1)= [(-3)130+(-3)124+(2)141+(2)186+(2)119]2 /n ci 2 1302/(4 x 40) = 140. 8 S. Sq(2)=](https://slidetodoc.com/presentation_image/da7f13a9cfb8c40206bf73a1de92b693/image-24.jpg)












































- Slides: 68
Multiple Comparisons
Multiple Comparisons v. Multiple Range Tests ØTukey’s and Duncan’s v. Orthogonal Contrasts
Orthogonal Contrasts
AOV Orthogonal Contrasts
Tukey’s Multiple Range Test
Consider that cultivars A and B were developed in Idaho and C and D developed in California v Do the two Idaho cultivars have the same yield potential? v Do the two California cultivars have the same yield potential? v Are Idaho cultivars higher yielding than California cultivars?
Analysis of Variance
Orthogonality ci = 0 [c 1 i x c 2 i] = 0 -1 -1 +1 +1 -- ci = 0 -1 +1 -- ci = 0 +1 -1 -1 +1 -- ci = 0
Calculating Orthogonal Contrasts d. f. (single contrast) = 1 S. Sq(contrast) = M. Sq = [ ci x Yi]2/n ci 2]
Orthogonal Contrasts - Example
S. Sq = [ ci x Yi]/[n 2 ci ] S. Sq(1) [(-1)64. 1+(-1)76. 6+(1)40. 1+(1)47. 8]2/ n ci 2 = 52. 82/(3 x 4) = 232. 32
S. Sq(2) [(-1)x 64. 1+(+1) x 76. 6]2/(3 x 2) 26. 04 S. Sq(3) [(-1)x 40. 1+(+1)x 47. 8]2/(3 x 2) 9. 88
Orthogonal Contrasts
Orthogonal Contrasts v Five dry bean cultivars (A, B, C, D, and E). v Cultivars A and B are drought susceptible. v Cultivars C, D and E are drought resistant. v Four Replicate RCB, one location v Limited irrigation applied.
Analysis of Variance
Orthogonal Contrast Example #2 Tukey’s Multiple Range Test
Orthogonal Contrasts v Is there any difference in yield potential between drought resistant and susceptible cultivars? v Is there any difference in yield potential between the two drought susceptible cultivars? v Are there any differences in yield potential between the three drought resistant cultivars?
Orthogonal Contrasts
S. Sq(1)= [(-3)130+(-3)124+(2)141+(2)186+(2)119]2 /n ci 2 1302/(4 x 40) = 140. 8 S. Sq(2)= [(-1)130+(+1)124]2 /n ci 2 62/(4 x 2) = 4. 5 S. Sq(Rem) = S. Sq(Cult)-S. Sq(1)-S. Sq(2) 728. 2 -140. 8 -4. 5 = 582. 9 (with 2 d. f. )
Analysis of Variance
Partition Contrast(rem)
Analysis of Variance
Alternative Contrasts
S. Sq(1)= [(-3)130+(-3)124+(2)141+(2)186+(2)119]2 /n ci 2 1302/(4 x 40) = 140. 8 S. Sq(2)= [(-1)130+(-1)124+(-1)141+(4)186+(-1)119]2 /n ci 2 2302/(4 x 20) = 661. 2 S. Sq(Rem) = S. Sq(Cult)-S. Sq(1)-S. Sq(2) 728. 2 -140. 8 -661. 2 = -73. 8 (Oops !!!) (with 2 d. f. )
Orthogonality c 1 i = 0 ( c 2 i = 0 ( [c 1 i x c 2 i] = 0 (- -3) + (+2) = 0 = -1) + (-1) + (+4) + (-1) = 0 = 3)(-1)+(-3)(-1)+2(4)+2(-1) =10 =
More Appropriate Contrasts
Analysis of Variance
Conclusions v Almost all the variation between cultivars is accounted for by the difference between cv ‘D’ and the others. v The remaining 4 cultivars are not significantly different. v Orthogonal contrast result is exactly the same are the result from Tukey’s contrasts.
Conclusions v Important to make the “correct” orthogonal contrasts. v Important to make contrasts which have “biological sense”. v Orthogonal contrasts should be decided prior to analyses and not dependant on the data.
Orthogonal Contrasts v Four Brassica species (B. napus, B. rapa, B. juncea, and S. alba). v Ten cultivars ‘nested’ within each species. v Three insecticide treatments (Thiodan, Furidan, no insecticide). v Three replicate split-plot design.
Analysis of Variance
Species and Treatment Means
Orthogonal Contrasts
Orthogonal Contrasts
Analysis of Variance
Species x Treatment Interaction
Species x Contrast (1)
Species x Contrast (2)
Orthogonal Contrasts and Interactions v Consider a cross classified factorial design with 4 replicates. v Four cultivars; 2 from Idaho and 2 from California (again). v 3 herbicide treatments; No-treatment control, Killall, and Onllik.
Orthogonal Contrasts and Interactions Cultivar Control Killall Onllik Total Ida. Best 90 168 147 405 Ida. Cream 75 141 135 351 Yuppy 45 64 75 184 Total 210 373 357
Orthogonal Contrasts and Interactions v Contrasts for cultivars? v. Idaho v California (-1 -1 +2), v. SS(Id v CA) = 2, 787; v Contrast for herbicides? v. Herbicide v No-treatment control (-2 +1 +1), v. SS(Herb v Not) = 1, 779; v Contrast for the interaction between the first two contrasts?
Orthogonal Contrasts and Interactions Genotype Herb Yield Ida. Best Cont 90 Ida. Best Killall 168 Ida. Best Onllik 147 Ida. Cream Cont 75 Ida. Cream Killall 141 Ida. Cream Onllik 135 Yuppy Cont 45 Yuppy Killall 64 Yuppy Onllik 75 ID v CA Herb v Not Interaction
Orthogonal Contrasts and Interactions Genotype Herb Yield ID v CA Ida. Best Cont 90 -1 Ida. Best Killall 168 -1 Ida. Best Onllik 147 -1 Ida. Cream Cont 75 -1 Ida. Cream Killall 141 -1 Ida. Cream Onllik 135 -1 Yuppy Cont 45 +2 Yuppy Killall 64 +2 Yuppy Onllik 75 +2 Herb v Not Interaction
Orthogonal Contrasts and Interactions Genotype Herb Yield ID v CA Herb v Not Ida. Best Cont 90 -1 -2 Ida. Best Killall 168 -1 +1 Ida. Best Onllik 147 -1 +1 Ida. Cream Cont 75 -1 -2 Ida. Cream Killall 141 -1 +1 Ida. Cream Onllik 135 -1 +1 Yuppy Cont 45 +2 -2 Yuppy Killall 64 +2 +1 Yuppy Onllik 75 +2 +1 Interaction
Orthogonal Contrasts and Interactions Genotype Herb Yield ID v CA Herb v Not Interaction Ida. Best Cont 90 -1 -2 +2 Ida. Best Killall 168 -1 +1 -1 Ida. Best Onllik 147 -1 +1 -1 Ida. Cream Cont 75 -1 -2 +2 Ida. Cream Killall 141 -1 +1 -1 Ida. Cream Onllik 135 -1 +1 -1 Yuppy Cont 45 +2 -2 -4 Yuppy Killall 64 +2 +1 +2 Yuppy Onllik 75 +2 +1 +2
Orthogonal Contrasts and Interactions v Contrasts for cultivars? v. Idaho v California (-1 -1 +2), v. SS(Id v CA) = 2, 787; v Contrast for herbicides? v. Herbicide v No-treatment control (-2 +1 +1), v. SS(Herb v Not) = 1, 779; v Contrast for the interaction between the first two contrasts? v. SS (Interaction) = 246.
Orthogonal Contrasts and Interactions
More Orthogonal Contrasts … Trend Analyses
Aim of Analyses of Variance v Detect significant differences between treatment means. v Determine trends that may exist as a result of varying specific factor levels.
Example #4 v Ten yellow mustard (S. alba) cultivars. v Five different nitrogen application rates (50, 75, 100, 125, and 150)
Analysis of Variance
Orthogonal Contrasts
Example #4
Example #4
Example #4
Analysis of Variance
Trend Analyses v. The F-value associates with a trend contrast is significant. v. All higher order trend contrasts are not significant.
Example #4
Linear
Quadratic
Cubic
Quartic
Example #5 v. Two carrot cultivars (‘Orange Gold’ and ‘Bugs Delight’. v. Four seeding rates (1. 5, 2. 0, 2. 5 and 3. 0 lb/acre). v. Three replicates.
Example #5
Analysis of Variance
Analysis of Variance
Analysis of Variance Orange Gold Bug’s Delight
End of Analyses of Variance Section