Modelling with logs Exponential examples Year No of

  • Slides: 4
Download presentation
Modelling with logs

Modelling with logs

Exponential examples •

Exponential examples •

Year No of digits 1951 44 1952 687 1957 969 1961 1332 1963 2917

Year No of digits 1951 44 1952 687 1957 969 1961 1332 1963 2917 1971 6002 1978 6533 1979 13395 1982 25962 1985 65050 1989 65087 1992 227832 1994 258716 1996 378632 1996 420921 1997 895932 1998 909526 1999 2098960 2001 4053946 2003 6320430 2004 7235733 2005 9152052 2006 9808358 2008 12978189 2013 17425170 2016 22338618 2017 23249425 year from 1950 2 7 11 13 21 28 29 32 35 39 42 44 46 46 47 48 49 51 53 54 55 56 58 63 66 67 log digits 2. 836957 2. 986324 3. 124504 3. 464936 3. 778296 3. 815113 4. 126943 4. 414338 4. 813247 4. 813494 5. 357615 5. 412823 5. 578217 5. 624201 5. 952275 5. 958815 6. 322004 6. 607878 6. 800747 6. 859483 6. 961518 6. 991596 7. 113214 7. 241177 7. 349056 7. 366412 Log y against x, with line of best fit 8, 5 7, 5 6, 5 5, 5 4, 5 3, 5 2, 5 0 10 20 30 40 50 60 70 80 35000000 30000000 25000000 20000000 15000000 10000000 5000000 0 0 10 20 30 40 50 60 70 80

https: //www. youtube. com/watch? v=n. KGCg. NJY-d. U&list=PLFp. Nm. Pb 6 Bso. T 38

https: //www. youtube. com/watch? v=n. KGCg. NJY-d. U&list=PLFp. Nm. Pb 6 Bso. T 38 Muqnn. LGChy. Ju 1 i. Wzhb. X Moore’s Law – one for us to do together using Desmos • The number of transistors in an integrated circuit doubles approximately every 2 years. • This data shows the maximum number of transistors per integrated circuit for a computer produced in that year Year 1972 1978 1985 1989 1993 1999 Transistors 2, 500 29, 000 275, 000 1, 180, 000 3, 100, 000 24, 000 https: //www. desmos. com/calculator/jdaguxe 4 gm Use your Classwiz to find the equation of the regression line for x against log(y) https: //www. desmos. com/calculator/nw 4 t 0 amsqk