Modeling the Cell Cycle Engine of Eukaryotes John

  • Slides: 26
Download presentation
Modeling the Cell Cycle Engine of Eukaryotes John J. Tyson & Bela Novak Virginia

Modeling the Cell Cycle Engine of Eukaryotes John J. Tyson & Bela Novak Virginia Polytechnic Institute & State Univ. Budapest Univ. Technology & Economics

The cell cycle is the sequence of events by which a growing cell replicates

The cell cycle is the sequence of events by which a growing cell replicates all its components and divides them more-or -less evenly between two daughter cells. . . …so that the two daughter cells contain all the information and machinery necessary to repeat the process.

G 1 n io s i v i d ell c S (DNA synthesis)

G 1 n io s i v i d ell c S (DNA synthesis) M (mitosis) G 2

G 1 n io s i v Too small? DNA damage? G 1/S checkpoint

G 1 n io s i v Too small? DNA damage? G 1/S checkpoint i ll d ce S 1. Alternation of S and M phases Unaligned chromosomes? Metaphase checkpoint M (mitosis) 2. Balanced growth and division (DNA synthesis) Unreplicated DNA? Too small? G 2/M checkpoint

G 1 cell division Cyclin-dependent kinase Cdk 1 Cyc. B Tar M (mitosis) S

G 1 cell division Cyclin-dependent kinase Cdk 1 Cyc. B Tar M (mitosis) S DNA replication Tar- P G 2

G 1 /S cell division S DNA replication Exit Cdk 1 Cyc. B M

G 1 /S cell division S DNA replication Exit Cdk 1 Cyc. B M (mitosis) G 2/M G 2

Wee 1 -P Wee 1 less active P- Cdk 1 Cyc. B Cdc 25

Wee 1 -P Wee 1 less active P- Cdk 1 Cyc. B Cdc 25 -P cyclin B degradation cyclin B synthesis Cdc 25 less active MPF cyclin B degradation

Solomon’s protocol for cyclin-induced activation of MPF Cyclin centrifuge M Ca 2+ Cycloheximide We

Solomon’s protocol for cyclin-induced activation of MPF Cyclin centrifuge M Ca 2+ Cycloheximide We 1 k Cd C dc 25 Cdk 1 Cyclin cytoplasmic extract pellet no synthesis of cyclin no degradation of cyclin

MPF Threshold Cyclin (n. M) Solomon et al. (1990) Cell 63: 1013.

MPF Threshold Cyclin (n. M) Solomon et al. (1990) Cell 63: 1013.

Frog egg active MPF Novak & Tyson (1993) J. Cell Sci. 106: 1153 no

Frog egg active MPF Novak & Tyson (1993) J. Cell Sci. 106: 1153 no synthesis or degradation of cyclin total cyclin

non-hysteretic MPF activity hysteretic Ti Ta cyclin level T cyclin level Prediction: The threshold

non-hysteretic MPF activity hysteretic Ti Ta cyclin level T cyclin level Prediction: The threshold concentration of cyclin B required to activate MPF is higher than the threshold concentration required to inactivate MPF.

Norel & Agur (1991). “A model for the adjustment of the mitotic clock by

Norel & Agur (1991). “A model for the adjustment of the mitotic clock by cyclin and MPF levels, ” Science 251: 1076 -1078. Tyson (1991). “Modeling the cell division cycle: cdc 2 and cyclin interactions, ” PNAS 88: 7328 -7332. Goldbeter (1991). “A minimal cascade model for the mitotic oscillator involving cyclin and cdc 2 kinase, ” PNAS 88: 9107 -9111. Novak & Tyson (1993). “Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos, ” J. Cell Sci. 106: 1153 -1168. Thron (1996). “A model for a bistable biochemical trigger of mitosis, ” Biophys. Chem. 57: 239 -251. Thron (1997). “Bistable biochemical switching and the control of the events of the cell cycle, ” Oncogene 15: 317 -325.

G 1 St ar ion t s ll ce i div S Finis h

G 1 St ar ion t s ll ce i div S Finis h DNA replication M (mitosis) G 2/M G 2

G 1 St ar ion t s ll ce i div CKI Cdh 1

G 1 St ar ion t s ll ce i div CKI Cdh 1 Cdc 20 S APC Cdk Clb 5 DNA replication Finis h APC Cln 2 M (mitosis) Clb 2 G 2/M G 2

Cdk Cyc. B Cdk h 1 Cd Cdk Cln 2 Cdk Cyc. B Cdc

Cdk Cyc. B Cdk h 1 Cd Cdk Cln 2 Cdk Cyc. B Cdc 14 AA CKI Cdh 1 CKI AA 0 c 2 d C Cdc 14 P P

The mathematical model synthesis degradation activation binding inactivation

The mathematical model synthesis degradation activation binding inactivation

Simulation of the budding yeast cell cycle mass CKI Cln 2 G 1 Cdh

Simulation of the budding yeast cell cycle mass CKI Cln 2 G 1 Cdh 1 S/M Clb 2 Cdc 20 Time (min)

30 equations 100 parameters fitted by brute force These are the “brutes” Kathy Chen

30 equations 100 parameters fitted by brute force These are the “brutes” Kathy Chen Laurence Calzone

“With four parameters I can fit an elephant…” Is the model yeast-shaped?

“With four parameters I can fit an elephant…” Is the model yeast-shaped?

k 1 = 0. 0013, v 2’ = 0. 001, v 2” = 0.

k 1 = 0. 0013, v 2’ = 0. 001, v 2” = 0. 17, k 3’ = 0. 02, k 3” = 0. 85, k 4’ = 0. 01, k 4” = 0. 9, J 3 = 0. 01, J 4 = 0. 01, k 9 = 0. 38, k 10 = 0. 2, k 5’ = 0. 005, k 5” = 2. 4, J 5 = 0. 5, k 6 = 0. 33, k 7 = 2. 2, J 7 = 0. 05, k 8 = 0. 2, J 8 = 0. 05, … Differential equations Parameter values

+APC CKI h 1 Cd Cdk 20 +APC dc Cln C Cdk Cyc. B

+APC CKI h 1 Cd Cdk 20 +APC dc Cln C Cdk Cyc. B

Mutual antagonism and bistability. . . Cdk Cyc. B CKI Cdh 1 Cln 2

Mutual antagonism and bistability. . . Cdk Cyc. B CKI Cdh 1 Cln 2 Cdc 14

S/G 2/M Start Clb 2/Cdk activity Finish G 1 A + Cln 2 B+Cdc

S/G 2/M Start Clb 2/Cdk activity Finish G 1 A + Cln 2 B+Cdc 14 A/B Cln 2 Cdc 14 time

From molecular networks to cell physiology… P Wee 1 G 2/M Cyc. B Wee

From molecular networks to cell physiology… P Wee 1 G 2/M Cyc. B Wee 1 Cdc 25 P Cdc 2 Cyc. B differential equations Cdc 25 molecules ? ? ? 1. 0 0. 8 MPF P Cdc 2 0. 6 0. 4 0. 2 0 physiology 0 10 20 time (min) simulation & analysis 30

Our thanks to. . . National Science Foundation (USA) National Science Foundation (Hungary) National

Our thanks to. . . National Science Foundation (USA) National Science Foundation (Hungary) National Institutes of Health James S. Mc. Donnell Foundation Defense Advanced Research Project Agency