Modeling of Human Movement Behavioral Knowledge from GPS
Modeling of Human Movement Behavioral Knowledge from GPS Traces for Categorizing Mobile Users SOURSE: WWW 2017 ADVISOR: JIA-LING KOH SPEAKER: HSIU-YI, CHU DATE: 2017/11/7
Outline l. Introduction l. Method l. Experiment l. Conclusion
Introduction l. Question Can we map the knowledge of one known region to another unknown(target) region and use this knowledge to categorize the users in the target region?
Introduction l. Goal Labeled GPS log Knowledge Unlabeled GPS log User category label
Outline l. Introduction l. Method l. Experiment l. Conclusion
Method
Method l. User Trajectory Segment l<S[], W[], Traj_Win[]> l. S[]: list of stay points, s = <lat, lon, Geotagg> l. W[]: list of waiting points, w = <lat, lon> l. Traj_Win[]: {S 1, (x 1, x 2), (x 2, y 2), … , S 2}
Method l. User Trajectory Segment
Method l. Semantic Stay Point Taxonomy(SSPTaxonomy) l. SSPTaxonomy: <N, Nc, W> l. N: place type of the Taxonomy l. Nc: associated code of the node place l. W: aggregated footprints of user
Method l. Semantic Stay Point Taxonomy(SSPTaxonomy)
Method l. User-Trace Summary(UTS) l. NB = <G, Θ>, G=<V, E> lv 1 i: (Nc, ti) l. Nc: associated code of the node place lti: temporal value of the node lei: dependences between the vertices
Method l. User-Trace Summary(UTS) l. Bayesian Network
Method lΘx 5|Pax 5 = 0. 46
Method lΘx 4|Pax 4*Θx 5|Pax 5*Θx 2|Pax 2 = 0. 6*0. 46*0. 98=0. 27048
Method l. Temporal Common Sub-sequence, (Temp. CS)clustering algorithm l. Similarity measure(Bhattacharyya distance): DB(X 4, X 5)=-ln{[X 4(0)X 5(0)]1/2+[X 4(1)X 5(1)]1/2}= -ln{[0. 4*(0. 4*0. 32+0. 6*0. 54)]1/2+[0. 6*(0. 4*0. 68+0. 6*0. 46)]1/2}
Method l. Temporal Common Sub-sequence, (Temp. CS)clustering algorithm l. NB 1: X 4 X 3 X 5 X 1 X 2 l. NB 2: X 4 X 1 X 6 X 5 X 2 l. Common stay points(Lc): X 4 X 5 X 2 X 1 l. Common Sub-sequence(Ls): X 4 X 5 X 2
Method l. Similarity between NB 1 and NB 2: l. Sim. Sequence(NB 1, NB 2)= 3/4[DB(X 4, X 5)+ DB(X 5, X 2)]
Method l. User Categorization l. Classification task: l. PVu = {p 1, p 2, …, pi} li: user-category lpi: probability of the user u in category i
Method l. User Categorization l. Feature lf 1: visit in types of places lf 2: Speed of movement or transportation mode lf 3: User Movement
Method l. User Categorization l. Bayesian network l. When independent l. Weighting each of feature
Method l. Transfer Learning
Method l. Transfer Learning l. Extract the parent’s code cp of a node c. l. Node c has n sibling, append n+1 along with the parent’s code cpn+1. l. Check whether the same place-type in and assign the same code if present. l. Generate l. Get the common taxonomy
Outline l. Introduction l. Method l. Experiment l. Conclusion
Experiment l. Dataset
Experiment l. Accuracy of User-Classification
Experiment
Outline l. Introduction l. Method l. Experiment l. Conclusion
Conclusion l. Address the user categorization problem from the GPS traces of the users. l. Propose a framework to model individual’s movement patterns. l. Transfer knowledge base from one city domain to another unknown city.
- Slides: 28