Motor Control Features 1. 2. 3. 4. 5. 6. 7. 8. Feedback (closed loop) Feedforward (open loop) Learning Predictive Control Joint (muscle) impedance Interaction with environment Hierarchical EPH, Rhythmic & Tracking movements, …
Limbic System Highest Level Need Associative Cortex Plan Cerebellum Motor Cortex Basal Ganglia Middle Level Motor Program Spinal Cord Musculo-Skeletal System Movement Lowest Level
Trajectory Selector Brain Model . qd qd Identifier System. Disturbance Models M P C and Adaptation Algorithm . b + - b + Delay Feedforward Controller s b Delay + + Model Predictive Impedance Control G 1 Receptors EMG Receptors Torque + + Td G 2 G 3 q . q Joint-Load
Example 1: Rhythmic Movement
Rhythmic Movement Errors
Model Response for Rhythmic Movement Time (s)
External Disturbances Time (s)
Model Mismatch Responses for Rhtymic Movement Time (s)
Example 2: Tracking Movement
Tracking Movement Errors
Tracking Movement
Errors of Parameter Mismatch ( Rhythmic Movement ) Parameter(s) J B K T g J-B-K 0% 15% 30% 45% 1. 43 1. 61 1. 94 1. 48 2. 32 1. 61 1. 53 2. 30 2. 51 1. 59 2. 50 2. 28 3. 14 3. 27 3. 04 1. 73 2. 75 3. 02 6. 59 Error is root mean square errors (rad).
Errors of Parameter Mismatch ( Tracking Movement ) Parameter(s) 0% 15% 30% 45% J B K T g td J-B-K 0. 41 0. 42 0. 43 0. 42 0. 40 0. 45 0. 44 0. 45 0. 46 0. 43 0. 48 0. 50 0. 51 0. 46 0. 47 0. 48 0. 44 0. 86 0. 57 0. 70 Error is root mean square errors (rad).
Example 3: Gait
Desired Trajectory Identification Control 1 2 MPC Step Function Dynamic Impedance PD Controller( b. S +s 1 _______ )T 1 S+1)(T 2 S+1( . Pendulum Dynamics Angle of Ankle Joint X =AX+BU Y =CX+DU x 0
Changes of Impulse Response & Control Signal in Double Pendulum Model Time (s)