Model Predictive Control of a Powder Coating Curing

  • Slides: 33
Download presentation
Model Predictive Control of a Powder Coating Curing Process: an Application of the MPC@CB©

Model Predictive Control of a Powder Coating Curing Process: an Application of the MPC@CB© Software by: Kamel Abid, Pascal Dufour, Isabelle Bombard, Pierre Laurent CCC’ 07, Zhangjiajie, July, 27 -29 2007 Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 1

Outline 1. Control problem statement 2. First principle PDE model 3. Model predictive control

Outline 1. Control problem statement 2. First principle PDE model 3. Model predictive control strategy 4. MPC@CB© software main features 5. Simulation results 6. Experimental results 7. Conclusions & perspectives Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 2

Outline 1. Control problem statement 2. First principle PDE model 3. Model predictive control

Outline 1. Control problem statement 2. First principle PDE model 3. Model predictive control strategy 4. MPC@CB© software main features 5. Simulation results 6. Experimental results 7. Conclusions & perspectives Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 3

Control problem statement • Painting applications in: building (outdoor and indoor), furniture, cars accessories

Control problem statement • Painting applications in: building (outdoor and indoor), furniture, cars accessories … • Need to decrease pollution due to the painting: organic solvent based coating are replaced by powder coatings • Quite recently, UV-curable powder coatings and lowtemperature coatings designed for heat sensitive substrates have appeared on the coatings market. • But few studies on curing kinetics, thermal modelling and control of such powder coating curing process: trajectory tracking or minimization of curing time or … Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 4

Outline 1. Control problem statement 2. First principle PDE model 3. Model predictive control

Outline 1. Control problem statement 2. First principle PDE model 3. Model predictive control strategy 4. MPC@CB© software main features 5. Simulation results 6. Experimental results 7. Conclusions & perspectives Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 5

First principle PDE model Powder coatings = fine particles of: resin + cross-linker in

First principle PDE model Powder coatings = fine particles of: resin + cross-linker in thermosetting or thermoplastic powder coatings + pigments + extenders + flow additives and fillers to achieve specific properties (color, …. ) Schematic drawing of the “substrat+powder” sample Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 6

First principle PDE model 1. Thermal model based on the Fourier law of heat

First principle PDE model 1. Thermal model based on the Fourier law of heat conduction uses: 1. the temperature variable varying in the thickness of the powder coated metal sample 2. the degree of cure conversion variable (ranging from 0+ to 1 at the end) 2. A non linear PDE Boundary control problem has to be tackled Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 7

First principle PDE model [Bombard et al, 2006] 2 λc, p ¶ Tp (z,

First principle PDE model [Bombard et al, 2006] 2 λc, p ¶ Tp (z, t) epΔH 0 ¶Tp (z, t) k 0 e = 2 ρp. Cpp ¶t ¶z ( -Ea ) RTp (z, t) m x (1 - x)n ] [ "z Î 0, ep , "t > 0 Tp(z, t) = temperature across the powder film thickness ep = film thickness (~0. 1 mm) x(z, t) = degree of cure λc, s ¶ 2 Ts (z, t) ¶ Ts (z, t) = 2 ρs Cps ¶t ¶z ] [ " z Î ep , ep + e s , " t > 0 Ts(z, t) = temperature across the substrate es = film thickness (~1 mm) Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 8

First principle PDE model [Bombard et al, 2006] 3 boundary conditions for the temperature:

First principle PDE model [Bombard et al, 2006] 3 boundary conditions for the temperature: - λp ¶Tp (z, t) ¶z 4 4 = αirφir (t) - σεp (Tp (z, t) - Text ) - hp (Tp (z, t) - Text ) Manipulated variable at z = 0, "t > 0 ¶Tp (z, t) at z = ep , "t > 0 - λc, p = -λc, s ¶z ¶z ¶Ts (z, t) 4 4 - λs = -σεs (Ts (z, t) - Text ) - hs (Ts (z, t) - Text ) ¶z at z = ep + es , "t > 0 Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 9

First principle PDE model [Bombard et al, 2006] The degree of cure x(z, t)

First principle PDE model [Bombard et al, 2006] The degree of cure x(z, t) of the powder: ¶x(z, t) = k 0 e ¶t ( -Ea ) RTp (z, t) m x (1 - x)n [ ] "z Î 0, ep , "t > 0 Initial conditions: Tp (z, t) = Ts (z, t) = Text"z Î [0, ep + es ], t = 0 x(z, t) = 0 + "z Î [0, ep ], t = 0 Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 10

Outline 1. Control problem statement 2. First principle PDE model 3. Model predictive control

Outline 1. Control problem statement 2. First principle PDE model 3. Model predictive control strategy 4. MPC@CB© software main features 5. Simulation results 6. Experimental results 7. Conclusions & perspectives Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 11

Model predictive control strategy Advantages: - constraints (such as manipulated variables physical limitations, constraints

Model predictive control strategy Advantages: - constraints (such as manipulated variables physical limitations, constraints due to operating procedures or safety reasons…) may be specified - a model aims to predict the future behavior of the process and the best one is chosen by a correct optimal control of the manipulated variables. Drawbacks: - computational time needed may limit online use - suboptimal solutions - how to handle unfeasibilities Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 12

Model predictive control strategy j=k +Np ì ïmin J(u) f(yref (j), yp (j) =

Model predictive control strategy j=k +Np ì ïmin J(u) f(yref (j), yp (j) = ï u j=k +1 ï ïsubject to constraints on the manipulated variable : ï íumin £ u(j) £ umax"j Î {k + 1, k + Np} ï ïΔumin £ u(j) - u(j - 1) £ Δumax"j Î {k + 1, k + Np} ï ïsubject to constraints on the controlled variable : ïc(y (j), y (j)) £ 0"j Î {k + 1, k + Np} ref î p å[ ] The function f means: trajectory tracking, processing time minimization, productivity function … Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 13

Model predictive control strategy [Dufour et al, IEEE TCST 11(5) 2003] • • Originaly

Model predictive control strategy [Dufour et al, IEEE TCST 11(5) 2003] • • Originaly developed for nonlinear PDE model control Main idea: decrease the online time needed to compute the PDE model based control Approach: • Input constraints: hyperbolic transformation • Output constraints: exterior penalty method • Linearization + sensitivites computed off line • On line use of a time varying linear model • On line resolution of a penalized (and so unconstrained) optimization control problem : a modified Levenberg Marquardt Algorithm Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 14

Outline 1. Control problem statement 2. First principle PDE model 3. Model predictive control

Outline 1. Control problem statement 2. First principle PDE model 3. Model predictive control strategy 4. MPC@CB© software main features 5. Simulation results 6. Experimental results 7. Conclusions & perspectives Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 15

MPC@CB© software main features 1. 2. 3. 4. Developed under Matlab, MPC@CB© solves any

MPC@CB© software main features 1. 2. 3. 4. Developed under Matlab, MPC@CB© solves any user defined : § trajectory tracking problem § operating time minimization problem § any cost function § input/output constraint handled Any user defined continuous model (SISO, MISO, SIMO, MIMO model), including large scale PDE model Easy to introduce a user defined observer Easy to apply the software for simulation or real time application MPC@CB ©: flexibility/ease for a quick use in control ! Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 16

Outline 1. Control problem statement 2. First principle PDE model 3. Model predictive control

Outline 1. Control problem statement 2. First principle PDE model 3. Model predictive control strategy 4. MPC@CB© software main features 5. Simulation results 6. Experimental results 7. Conclusions & perspectives Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 17

Simulation results Minimization of the curing time, with magnitude+velocity constraints on u(t) + output

Simulation results Minimization of the curing time, with magnitude+velocity constraints on u(t) + output contraint yp(t) : horizon=6, sampling time = 1 s Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 18

Simulation results Minimization of the curing time, with magnitude+velocity constraints on u(t) + output

Simulation results Minimization of the curing time, with magnitude+velocity constraints on u(t) + output contraint yp(t) : horizon=6, sampling time = 1 s Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 19

Outline 1. Control problem statement 2. First principle PDE model 3. Model predictive control

Outline 1. Control problem statement 2. First principle PDE model 3. Model predictive control strategy 4. MPC@CB© software main features 5. Simulation results 6. Experimental results 7. Conclusions & perspectives Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 20

Experimental results Temperature trajectory tracking, with magnitude+velocity constraints on u(t) : horizon=6, sampling time

Experimental results Temperature trajectory tracking, with magnitude+velocity constraints on u(t) : horizon=6, sampling time = 1 s Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 21

Experimental results Temperature trajectory tracking, with magnitude+velocity constraints on u(t) : horizon=6, sampling time

Experimental results Temperature trajectory tracking, with magnitude+velocity constraints on u(t) : horizon=6, sampling time = 1 s Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 22

Experimental results Temperature trajectory tracking, with magnitude+velocity constraints on u(t) : horizon=6, sampling time

Experimental results Temperature trajectory tracking, with magnitude+velocity constraints on u(t) : horizon=6, sampling time = 1 s Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 23

Experimental results Temperature trajectory tracking, with magnitude+velocity constraints on u(t) : horizon=14, sampling time

Experimental results Temperature trajectory tracking, with magnitude+velocity constraints on u(t) : horizon=14, sampling time = 1 s Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 24

Experimental results Temperature trajectory tracking, with magnitude+velocity constraints on u(t) : horizon=14, sampling time

Experimental results Temperature trajectory tracking, with magnitude+velocity constraints on u(t) : horizon=14, sampling time = 1 s Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 25

Experimental results Temperature trajectory tracking, with magnitude+velocity constraints on u(t) : horizon=14, sampling time

Experimental results Temperature trajectory tracking, with magnitude+velocity constraints on u(t) : horizon=14, sampling time = 1 s Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 26

Experimental results Temperature trajectory tracking: influence of the horizon over the results Université de

Experimental results Temperature trajectory tracking: influence of the horizon over the results Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 27

Outline 1. Control problem statement 2. First principle PDE model 3. Model predictive control

Outline 1. Control problem statement 2. First principle PDE model 3. Model predictive control strategy 4. MPC@CB© software main features 5. Simulation results 6. Experimental results 7. Conclusions & perspectives Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 28

Conclusions • • The real time control of powder curing is possible : temperature

Conclusions • • The real time control of powder curing is possible : temperature trajectory tracking Experimental control of PDE system by a general MPC@CB© software has been shown Perspectives • • • Minimization of the powder curing time under constraints: an observer is under development MPC@CB© may be used for any process: since its development, it is currently used for control of polymer production, vial lyophilisation, pasta drying. To use MPC@CB©: dufour@lagep. univ-lyon 1. fr Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 29

Thank you Any questions ? Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506

Thank you Any questions ? Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 30

Experimental results Temperature trajectory tracking, with magnitude+velocity constraints on u(t) : horizon=6, sampling time

Experimental results Temperature trajectory tracking, with magnitude+velocity constraints on u(t) : horizon=6, sampling time = 1 s Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 31

Experimental results Temperature trajectory tracking, with magnitude+velocity constraints on u(t) : horizon=14, sampling time

Experimental results Temperature trajectory tracking, with magnitude+velocity constraints on u(t) : horizon=14, sampling time = 1 s Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 32

Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 33

Université de Lyon. CNRS-LAGEP, France Paper CCC 07 -0506 dufour@lagep. univ-lyon 1. fr 33