ML style transfer outline CNN Visualization Neural Art





















![Hybrid Images [siggraph 06] Hybrid Images [siggraph 06]](https://slidetodoc.com/presentation_image_h2/071e3d6b23a6ca1754247d3fc14f4d5d/image-22.jpg)


























- Slides: 48
ML style transfer
outline • CNN Visualization • Neural Art
Padding, Stride, color
Hyperparameter, featureimage
Hyperparameter
Visual Perception of Computer
Visualization
Visualizing CNN http: //vision 03. csail. mit. edu/cnn_art/data/single_layer. png 10
Visualizing CNN flower random noise CNN filter response 11
Gradient Ascent 12
Gradient Ascent 13
Gradient Ascent 80
Different Layers of Visualization CNN 15
Multiscale Image Generation visualize resize visualize 16
Multiscale Image Generation 17
Deep Dream • https: //research. googleblog. com/2015/06/inceptionism- going-deeper-intoneural. html • Source code: https: //github. com/tensorflow/blob/master/tensorflow/ex amples/tutorials/deepdream. ipynb http: //download. tensorflow. org/example_images /flower_photos. tgz 18
Deep Dream 19
Deep Dream 20
Neural Art
Hybrid Images [siggraph 06]
Hybrid Images
VGGNet (2014) • Paper: https: //arxiv. org/abs/1409. 1556
VGG 19
Neural Art • Paper: https: //arxiv. org/abs/1508. 06576 • Source code : https: //github. com/ckmarkoh/neuralart_tensorflow content artwork ht tp: //www. taipei 101. com. tw/upload/news/201502/2015 021711505431705145. J PG style ht tps: //github. com/andersbll/neural_ar tistic_style/blob/master/images/starry_ night. jpg? raw=true 26
The Mechanism of Painting Artist Scene Brain Style Computer Art. Work Neural Networks 27
Content Generation Content Artist Brain Neural Stimulation Minimize the difference Canvas Draw 28
Content Generation Content VGG 19 Width*Height Filter Responses Depth Minimize the difference Canvas Result Update the color of the pixels 29
Content Generation Layer l’s Filter Responses: Input Canvas: Layer l’s Filter l Responses: Depth (i) Input Photo: Width*Height (j) 30
Content Generation • Backward Propagation Input Canvas: VGG 19 Layer l’s Filter l Responses: Update Canvas Learning Rate 31
Content Generation 32
Content Generation VGG 19 conv 1_2 conv 2_2 conv 3_4 conv 4_4 conv 5_1 conv 5_2 33
Style Generation Artwork VGG 19 Filter Responses Gram Matrix G Positiondependent Depth Width*Height G Depth Positionindependent 34
Style Generation Layer l’s Filter Responses Gram Matrix Width*Height 1. . 5 Depth . 5 1. k . 5 . 25 1. . 5 Depth G . 5 1. . 25. 5 1. Depth 35
Style Generation Input Artwork: Layer l’s Gram Matrix Input Canvas: Layer l’s Gram Matrix Layer l’s Filter Responses 36
Style Generation Style VGG 19 Gram Matrix Filter Responses G Minimize the difference Canvas G Result Update the color of the pixels 100
Style Generation 38
Style Generation VGG 19 Conv 1_1 Conv 2_1 Conv 3_1 Conv 4_1 Conv 1_1 Conv 2_1 Conv 3_1 Conv 4_1 Conv 5_1 39
Artwork Generation VGG 19 Filter Responses Gram Matrix 40
Artwork Generation VGG 19 Conv 4_2 Conv 1_1 Conv 2_1 Conv 3_1 Conv 4_1 Conv 5_1 41
Artwork Generation 42
Content v. s. Style 0. 15 0. 02 0. 007 43
Neural Doodle • Image analogy 44
Neural Doodle • Paper: https: //arxiv. org/abs/1603. 01768 • Source code: https: //github. com/alexjc/neural-doodle content semantic maps result style 45
Neural Doodle • Image analogy 46
Real-time Texture Synthesis • Paper: https: //arxiv. org/pdf/1604. 04382 v 1. pdf ◦ GAN: https: //arxiv. org/pdf/1406. 2661 v 1. pdf ◦ VAE: https: //arxiv. org/pdf/1312. 6114 v 10. pdf • Source Code : https: //github. com/chuanli 11/MGANs 110
Reference • 斎藤康毅 Deep Learning:用Python進行深度學習 的基礎理論實作 • https: //www. csie. ntu. edu. tw/~yvchen/f 105 adl/doc/161103_Convolutional. NN. pdf • https: //github. com/hunter-heidenreich/ML-Open. Source-Implementations/blob/master/Style. Transfer/Style%20 Transfer. ipynb