Microwave Devices Microwave Semiconductor Devices 4 2008 1

  • Slides: 34
Download presentation
Microwave Devices - Microwave Semiconductor Devices - 4 2008 / 1 학기 서광석 •

Microwave Devices - Microwave Semiconductor Devices - 4 2008 / 1 학기 서광석 • S. N. U. EE Microwave Devices 2008

Fermi Level Pinning q Bn constant regardless of metal Various Models – Fermi-level pinning

Fermi Level Pinning q Bn constant regardless of metal Various Models – Fermi-level pinning (Bardeen limit) Process의 영향 • Metal deposition process • Surface Preparation Method • Thermal annealing Ref. : H. Hasegawa, IPRM 1998, p. 451 • S. N. U. EE Microwave Devices 2008

Unified Defect Model for Schottky Barrier & Surface - X-ray photoelectron spectroscopy - MBE에서의

Unified Defect Model for Schottky Barrier & Surface - X-ray photoelectron spectroscopy - MBE에서의 금속막 증착 에 의해 q B 측정 Ec n-type Ga. As EC ~ 0. 75 e. V q Bn ~ 0. 5 e. V p-type Ga. As EFm Ev 1. 42 e. V ~ 0. 75 e. V ~ 0. 5 e. V EFN ESA ESD EFP EN < Unified Defect Model for Ga. As > EF EV 5 10 15 20 deposited metal(Å) EC ( n-type Ga. As) OOOO ---Wsn n-Ga. As Surface of n-Ga. As ++++ OOOO Wsp p-Ga. As Surface of p-Ga. As * Model의 2개(+, -) level 존재는 이견이 없으나 level의 크기, 값에 대해서는 아직 논의/연구 • S. N. U. EE Microwave Devices 2008

Semi-Insulating Ga. As or In. P Substrate * Crystal 內의 불순물 1. Ingot 재료내의

Semi-Insulating Ga. As or In. P Substrate * Crystal 內의 불순물 1. Ingot 재료내의 불순물 2. Boat 의 효과 ex, quartz boat Si 불순물 ( Si. O 2 ) ~1016 cm-3 graphite boat C 불순물 (C) < 불순물이 나타나는 것은 필연적 > * semi - insulating substrate의 장점 신호선 very small interaction Device II S. I. wafer 1. Device 간 isolation 용이 • S. N. U. EE Electric Field ( substrate ) GND 2. 전송선의 경우 substrate의 저항률이 클수록 dielectric loss 감소 Microwave Devices 2008

Undoped Ga. As Semi-Insulating Substrate (crystal growth) As. Ga antisite defect (As in Ga

Undoped Ga. As Semi-Insulating Substrate (crystal growth) As. Ga antisite defect (As in Ga site) deep level donor defect (EL 2) ~108 ·cm EC ~ conducting EL 2 deep donor 0. 79 e. V EA shallow acceptor (Carbon) EV 0. 475 As/(Ga +As) 비율 1016 Graphite crucible cm-3 * undoped S. I. Ga. As substrate의 사용이 일반적 ; C ~ EL 2 ~ 2 x 1016 cm-3 [melt에서 As/(Ga+As)의 비율 증가] * high EL 2 density small n , 전기적 특성 나쁨 - controlled carbon S. I. Ga. As substrate ; graphite control C ~ 1015 cm-3 EL 2 ~ 2 x 1015 cm-3 * In. P undoped S. I 구현은 어려움. : Fe doping에 의해 deep level 형성 • S. N. U. EE Microwave Devices 2008

Various RF Active Devices < Market Share of Semiconductor Devices > In the past

Various RF Active Devices < Market Share of Semiconductor Devices > In the past 10 years, III-V technology dominates RF market, but RF MOSFET becomes a strong contender recently. • S. N. U. EE Microwave Devices 2008

Microwave FETs [ Device Structures ] l l l MESFET ; Schottky-FET Heterostructure FET

Microwave FETs [ Device Structures ] l l l MESFET ; Schottky-FET Heterostructure FET (HFET) n Doped Channel HFET n High Electron Mobility Transistor (HEMT) Modulation Doped FET (MODFET) MOSFET or MISFET [ Material Related Classification ] l l l Ga. As MESFET In. Ga. As/Al. Ga. As HFET In. Ga. As/In. Al. As HFET Si MOSFET/Si. Ge HFET, Si LDMOS In. P MISFET, Ga. N/Al. Ga. N HMISFET • S. N. U. EE Microwave Devices 2008

Comparison of Frequency Performance of FETs - RF performance of Si MOSFET is comparable

Comparison of Frequency Performance of FETs - RF performance of Si MOSFET is comparable to that of Ga. As p. HEMT. - But it is still inferior to that of Ga. As m. HEMT and In. P HEMT. • S. N. U. EE Microwave Devices 2008

Noise Figure of FETs - The noise figures of Si MOS are low to

Noise Figure of FETs - The noise figures of Si MOS are low to be good for the low-end RF applications. - But the noise performance is still poorer than that targeted by the ITRS. • S. N. U. EE Microwave Devices 2008

Modulation Doping spacer eeee EC d. S EF EC Si doping Al. Ga. As

Modulation Doping spacer eeee EC d. S EF EC Si doping Al. Ga. As EC d. S Ga. As electrons (2 DEG) channel electron은 ionized-doner에 의한 impurity-scattering을 겪지 않음 n ↑, Vdrift ↑ with modulation doped structure n ds 2 DEG n ; I. I. scattering 감소 (예) ds =200 Å (77 K) n ~150, 000 cm 2/V·s bulk (4 K) n > 1, 000 cm 2/V·s T I. I. Scattering Lattice Scattering • S. N. U. EE In. Ga. As/In. Al. As MD Structure - alloy scattering limited Microwave Devices 2008

Short Channel Ga. As MESFET & HFET small Lg 일때의 MESFET 구조 Lg Doped

Short Channel Ga. As MESFET & HFET small Lg 일때의 MESFET 구조 Lg Doped Channel HFET (Heterostructure FET) G D S a i-Al. Ga. As n-Ga. As n Ga. As Semi-Insulating Buffer /S. I. Substrate EC - short channel의 효과를 막기 위해 Lg / a 5 필요 - n Ga. As의 농도 ND일 때 ND · a = 일정 for constant ID - ND 1018 cm-3 일 때 gate 전류 Ig 증가 (noise 특성 열화 ) e e EC EFm Heterostructure Barrier(절연체 역할)를 사용하여 Ig 감소 필요(HFET) • S. N. U. EE Al. Ga. As Microwave Devices 2008

 -doped Doped Channel Heterostructure FET dbarrier d ch i Al. Ga. As -doping

-doped Doped Channel Heterostructure FET dbarrier d ch i Al. Ga. As -doping (n) i Ga. As i Al. Ga. As dwell C ch = S / d ch = S / (d barrier + 0. 5 d well ) gm = C ch vch. sat 에 의해 d ch gm * dwell 이 작으면 d ch(VGS) ~ constant gm ~ constant dwell 이 너무 작으면 (n ch)max , I D. max d ch이 작으면 Schottky barrier에 의해 VGS=0 의 경우에도 channel depletion 가능 (Enhancement-mode FET) E-mode FET 의 경우 gm , linearity 개선 (IM 3 1/gm 2) • S. N. U. EE Ref. : Y-J. Chan et al. , IEEE Electron Dev. Lett. , p. 33, 1995 * 0. 2 m In. Ga. P/In. Ga. As DCFET f. T=45 GHz, fmax=100 GHz ( poor microwave performance ) Microwave Devices 2008

Advanced HFET의 구조 S Lgs G D 1. large ( Ec)A-B for small leakage

Advanced HFET의 구조 S Lgs G D 1. large ( Ec)A-B for small leakage current 2. small Rs for large g m material A material B Rs RD intrinsic + vgs small Rs g m. int RS small Lgs small sheet resistance A : quasi-insulator B : channel 3. large vsat for large ID 4. small ( n)A and ( n)B for large breakdown voltage • S. N. U. EE Microwave Devices 2008

MD Structure의 여러 구조 (1) < Inverted HEMT > < Normal HEMT > n-Al.

MD Structure의 여러 구조 (1) < Inverted HEMT > < Normal HEMT > n-Al. Ga. As i-Ga. As(In. Ga. As) 2 DEG i-Al. Ga. As (thin) 2 DEG i-Ga. As(In. Ga. As) buffer/substrate n-Al. Ga. As buffer/substrate thermal noise 감소 - small mobility due to 1. rough Al. Ga. As surface 2. dopant (Si) diffusion & segregation (저잡음 소자, LNA) -better ohmic contact - large mobility smallest sheet resistance • S. N. U. EE i-Al. Ga. As (thin) Microwave Devices 2008

MD Structure의 여러 구조 (2) Ø barrier의 doping 방법 < Double-Heterostructure HEMT > n-Al.

MD Structure의 여러 구조 (2) Ø barrier의 doping 방법 < Double-Heterostructure HEMT > n-Al. Ga. As < -doped> i-Al. Ga. As (thin) 2 DEG i-Ga. As(In. Ga. As) i-Al. Ga. As (thin) n-Al. Ga. As < uniformdoped > - largest 2 DEG concentration (n. S) ID = q n. S v. S W 증가 power device • S. N. U. EE - barrier의 -doping은 channel 전하량 ( ns )를 증가시킴. Microwave Devices 2008

Band Diagram of Normal HEMT (1) < zero gate bias > thin barrier undoped

Band Diagram of Normal HEMT (1) < zero gate bias > thin barrier undoped Al. Ga. As (spacer) EC : 0. 2~0. 3 e. V Bn thick EFm EFS doped Al. Ga. As (x) +q. ND (a) conduction band diagram d ch 80Å x wave function penetration n Al. Ga. As가 넓은 경우 neutral 한 영역이 나타남 • S. N. U. EE ch(x) (b) charge density distribution Microwave Devices 2008

Band Diagram of Normal HEMT (2) < gate bias applied > more negative bias

Band Diagram of Normal HEMT (2) < gate bias applied > more negative bias Bn EFm –q. VG EFS (a) negative gate bias nb EFm q. VG * n(Al 0. 3 Ga. As) ~ 1, 000 cm 2/Vs undepleted n-Al. Ga. As parasitic MESFET channel • S. N. U. EE EFS * n(Ga. As) ~ 5, 000 cm 2/Vs (b) forward gate bias Microwave Devices 2008

gm Characteristics of Heterostructure FET due to small EC gm (2 DEG에 채울 수

gm Characteristics of Heterostructure FET due to small EC gm (2 DEG에 채울 수 있는 전자의 양이 적다) doped channel HFET (high n) HEMT (low n) barrier region에 새로운 channel 형성 <HEMT> VG gm decrease by the parasitic MESFET formation VG 가 클 때 undepleted n-Al. Ga. As 내의 전자에 의한 current flow 발생 parasitic MESFET 형성 small vbarrier로 인해 gm • S. N. U. EE VG parasitic MESFET; poor linearity of ID Microwave Devices 2008

Charge-Voltage Characteristics of HEMT Structure (1) - Ga. As/Al. Ga. As interface의 Al. Ga.

Charge-Voltage Characteristics of HEMT Structure (1) - Ga. As/Al. Ga. As interface의 Al. Ga. As 쪽에서의 전기장 Fi 2 - Poisson equation in the barrier By solving Poisson equation, From the band diagram, , where • S. N. U. EE Microwave Devices 2008

Charge-Voltage Characteristics of HEMT Structure (2) EF(ns) can be approximated as (Schroedinger Eq. Solving

Charge-Voltage Characteristics of HEMT Structure (2) EF(ns) can be approximated as (Schroedinger Eq. Solving & 2 -D Density of States) where ~ 80 Å * The same analysis can be applied to Si/Si. O 2 MOS structure. - quantum mechanical correction typical spacer thickness di ~ 20 -70 Å ( low noise device : large di , power device : small di ) ~4Å • S. N. U. EE Microwave Devices 2008

Pseudomorphic (Strained Layer) Channel - PHEMT * channel의 구조 A B A (or C)

Pseudomorphic (Strained Layer) Channel - PHEMT * channel의 구조 A B A (or C) Ec Ec effective barrier height q B = Ec – (EF - Ec)B EF q B qns function of ns * , Nc of Ga. As ~ 5 x 1017 cm-3 large EF for considerable ns in Ga. As * Ec의 증가 1. small Ig 2. large ns * pseudomorphic strained layer - no defect for t < hc (critical thickness) Alx. Ga. As Ec t Ga. As Iny. Ga. As (lattice mismatched) • S. N. U. EE a. Al. Ga. As Iny. Ga. As …. . compressive strain [ lattice constant a. In. Ga. As > a. Al. Ga. As ] Microwave Devices 2008

Extended MOSFET Modeling Figure of Merits for RF MOSFETs - Transconductance gm Av, max=gm/g.

Extended MOSFET Modeling Figure of Merits for RF MOSFETs - Transconductance gm Av, max=gm/g. DS - Drain Conductance g. DS - Cutoff Frequency f. T - Maximum Oscillation Frequency fmax - Minimum Noise Figure Fmin - Threshold Matching σth �� “Lumped”, frequency-independent parasitic model is adequate. �� Bias-dependent small-signal model for highest accuracy • S. N. U. EE Microwave Devices 2008

Small Signal Model of Heterostructure FET Ri : distributed nature of channel에 의한 저항

Small Signal Model of Heterostructure FET Ri : distributed nature of channel에 의한 저항 ~ 1/3 • Rchannel RG : gate feed line의 metal 저항 – T형 gate 형성으로 감소시킴. U*gs : voltage across Cgs , gm=gmo • exp(-j t) • S. N. U. EE Microwave Devices 2008

Noise Sources Mean Square Noise Voltage • S. N. U. EE Microwave Devices 2008

Noise Sources Mean Square Noise Voltage • S. N. U. EE Microwave Devices 2008

Noise Performance of Various FET Technologies (2001) Fukui’s Equation for NFmin : • S.

Noise Performance of Various FET Technologies (2001) Fukui’s Equation for NFmin : • S. N. U. EE Microwave Devices 2008

Minimum Noise Figure of Si MOS Transistor From “RF Device Technologies”, David Harame, 2002

Minimum Noise Figure of Si MOS Transistor From “RF Device Technologies”, David Harame, 2002 IEDM Short Course • S. N. U. EE Microwave Devices 2008

RF Power Performance • S. N. U. EE Microwave Devices 2008

RF Power Performance • S. N. U. EE Microwave Devices 2008

f. T and fmax of Heterostructure FET f. T : current gain H 21=1이

f. T and fmax of Heterostructure FET f. T : current gain H 21=1이 되는 주파수 – current gain cutoff frequency fmax: Unilateral Power Gain U=1이 되는 주파수 – maximum frequency of oscillation * fmax을 높이기 위해서는 input 저항 (Ri+Rg+Rs)와 feedback capacitance CGD의 감소가 필요 • S. N. U. EE Microwave Devices 2008

f. T x gate-length of III-V FETs f. T of Devices Si NMOS :

f. T x gate-length of III-V FETs f. T of Devices Si NMOS : 330 GHz Si. Ge HBT : 375 GHz III-V HEMT : 562 GHz (In. P PHEMT) • S. N. U. EE Microwave Devices 2008

U versus MAG for fmax From “RF Device Technologies”, David Harame, 2002 IEDM Short

U versus MAG for fmax From “RF Device Technologies”, David Harame, 2002 IEDM Short Course • S. N. U. EE Microwave Devices 2008

MOSFET Fingure Width Scaling : f. T , fmax Improved Gate Wiring Optimization of

MOSFET Fingure Width Scaling : f. T , fmax Improved Gate Wiring Optimization of Gate Wiring – TSMC 2004 • S. N. U. EE Microwave Devices 2008

Process-Induced Strain in Advanced CMOS Schematic features of the various process strain (a) silicon

Process-Induced Strain in Advanced CMOS Schematic features of the various process strain (a) silicon nitride capping layer to create a tensile channel (b) STI to create a compressive channel (c) silicide strain (d) embedded Si. Ge S/D process strain to create a compressive strain Ref. : C. Liu, et al. , IEEE Circuits and Devices Mag. , May/June 2005, pp. 21 • S. N. U. EE Microwave Devices 2008

Advanced SOI-CMOS with Strain Engineering ( I ) f. MAX of n. FETs for

Advanced SOI-CMOS with Strain Engineering ( I ) f. MAX of n. FETs for different gate widths NFmin of n. FETs for different gate widths * 33 nm n. FET in IBM 90 nm SOI CMOS * 38 nm n. FET in IBM 90 nm SOI CMOS Ref. : S. Lee, et al. , “Record RF Performance of Sub-46 nm Lgate NFETs in Microprocessor SOI CMOS Technologies, ” IEDM 2005, pp. 241 -244 • S. N. U. EE Microwave Devices 2008

Advanced SOI-CMOS with Strain Engineering ( II ) Record f. MAX of 450 GHz

Advanced SOI-CMOS with Strain Engineering ( II ) Record f. MAX of 450 GHz in 33 nm Lpoly n. FETs (90 nm node) General trend of f. MAX for different gate widths * 80 μm (1. 2425μm by 64 fingers) device Ref. : S. Lee, et al. , IEDM 2005, pp. 241 • S. N. U. EE Ref. : J. Pekarik, et al. , EGAAS 2005, pp. 29 Microwave Devices 2008