Microwave Devices Microwave Semiconductor Devices 3 2008 1

  • Slides: 28
Download presentation
Microwave Devices - Microwave Semiconductor Devices - 3 2008 / 1 학기 서광석 •

Microwave Devices - Microwave Semiconductor Devices - 3 2008 / 1 학기 서광석 • S. N. U. EE Microwave Devices 2008

Microwave Diodes l Diodes for Signal Processing - Predistorter for linear amp. - Mixer/Frequency

Microwave Diodes l Diodes for Signal Processing - Predistorter for linear amp. - Mixer/Frequency Multiplier - Switch n Schottky Diode n PIN Diode n Heterostructure Barrier Diode n Planar-Doped Barrier Diode l Diodes for Signal Sources (Oscillators) Gunn Diode n IMPATT Diode n Resonant Tunneling Diode n Varactor Diode n • S. N. U. EE Microwave Devices 2008

Diode Nonlinear Microwave Circuits diode frequency multiplier single-ended diode mixer • S. N. U.

Diode Nonlinear Microwave Circuits diode frequency multiplier single-ended diode mixer • S. N. U. EE Microwave Devices 2008

Schottky Diode Metal (Schottky Contact) n Ga. As n+ Ga. As (Ref. ) 1.

Schottky Diode Metal (Schottky Contact) n Ga. As n+ Ga. As (Ref. ) 1. Sze, “Physics of Semiconductor Devices, ” Chap. 5 2. Rhoderick, “Metal-Semiconductor Metal (Ohmic Contact) Contacts” Vacuum level metal • S. N. U. EE n Ga. As Microwave Devices 2008

Schottky Diode의 Band Diagram <Zero bias> <Forward bias> X eee <Reverse bias> Small Leakage

Schottky Diode의 Band Diagram <Zero bias> <Forward bias> X eee <Reverse bias> Small Leakage (~n. A) • S. N. U. EE Microwave Devices 2008

Schottky diode의 I-V 특성 * thermionic emission theory : 일반적(Ga. As, Si) E JS

Schottky diode의 I-V 특성 * thermionic emission theory : 일반적(Ga. As, Si) E JS M N(E) WD <Forward bias> = effective Richardson constant (A* : include quantum mechanical correction) thermionic theory holds when • S. N. U. EE Microwave Devices 2008

Schottky Effect ~ 수십 m. V 측정 방법 • S. N. U. EE 1.

Schottky Effect ~ 수십 m. V 측정 방법 • S. N. U. EE 1. I-V 특성 2. C-V 특성 3. (Photo-electron을 이용한 측정) Microwave Devices 2008

Schottky Diode의 구조 Ga. As의 Bn : 0. 7~0. 8 e. V Alx. Ga

Schottky Diode의 구조 Ga. As의 Bn : 0. 7~0. 8 e. V Alx. Ga 1 -x. As 의 Bn : 0. 8~0. 9 e. V In 0. 53 Ga 0. 47 As 의 Bn : 0. 2 e. V (better for ohmic) In 0. 52 Al 0. 48 As 의 Bn : ~0. 5 e. V (증가 시킬 필요가 있음. ) * damage free process에 의한 q Bn= q( m- ) 를 구현하기 위한 연구가 진행. electrochemical plating에 의한 In. Al. As (/In. Ga. As)구조의 Pt Schottky diode (vertical) n (horizontal) n+ n+ n Rch S. I. Substrate • S. N. U. EE Rch에 의한 series 저항 문제 Microwave Devices 2008

Model of Schottky Diode Rch에 의한 series 저항 문제 RON/ROFF Rseries CJ Tera-Hertz Schottky

Model of Schottky Diode Rch에 의한 series 저항 문제 RON/ROFF Rseries CJ Tera-Hertz Schottky diode – diode의 width를 0. 25 m 정도로 감소하여 Ron + Rseries ↓, cut-off frequency ↑ (contact pad는 air-bridge로 연결) • S. N. U. EE Microwave Devices 2008

Microwave Schottky Diode • S. N. U. EE Microwave Devices 2008

Microwave Schottky Diode • S. N. U. EE Microwave Devices 2008

Membrane-Type Schottky Diode for 1. 5 THz Frequency Source Ref. : IEEE Trans. MTT,

Membrane-Type Schottky Diode for 1. 5 THz Frequency Source Ref. : IEEE Trans. MTT, pp. 1538, 2004 • S. N. U. EE Microwave Devices 2008

PIN Diode Switch • S. N. U. EE Microwave Devices 2008

PIN Diode Switch • S. N. U. EE Microwave Devices 2008

Principles of Transit Time Devices IMPATT ; INJ ~ 180º (IMPact ionization Avanche Transit

Principles of Transit Time Devices IMPATT ; INJ ~ 180º (IMPact ionization Avanche Transit Time) TUNNETT ; INJ ~ 90º (TUNNEel Transit Time) Ref. : IEEE Trans. MTT, pp. 760, 2002 • S. N. U. EE Microwave Devices 2008

Transit-Time Millimeter-wave Sources • S. N. U. EE Microwave Devices 2008

Transit-Time Millimeter-wave Sources • S. N. U. EE Microwave Devices 2008

Gunn Millimeter-wave Sources • S. N. U. EE Microwave Devices 2008

Gunn Millimeter-wave Sources • S. N. U. EE Microwave Devices 2008

RTD Millimeter-wave Sources • S. N. U. EE Microwave Devices 2008

RTD Millimeter-wave Sources • S. N. U. EE Microwave Devices 2008

Frequency Multiplier Millimeter-wave Sources Heterostructure Barrier Varactor (HBV) for frequency tripler & Quintupler •

Frequency Multiplier Millimeter-wave Sources Heterostructure Barrier Varactor (HBV) for frequency tripler & Quintupler • S. N. U. EE 3 W at 1. 7 THz with Schottky diode (2004) Microwave Devices 2008

Terahertz and Infrared Solid State Sources Quantum Cascade Laser (QCL) No compact sources exist

Terahertz and Infrared Solid State Sources Quantum Cascade Laser (QCL) No compact sources exist for the generation of the LO power at 1 -10 THz. Ref. : M. Tonouchi, p. 97, Nature Photonics, 2007 • S. N. U. EE Microwave Devices 2008

Power Levels for Sub-Millimeterwave Oscillators 254 GHz/158μW, 346 GHz/25μW Oscillator MMICs with 35 nm

Power Levels for Sub-Millimeterwave Oscillators 254 GHz/158μW, 346 GHz/25μW Oscillator MMICs with 35 nm In. P HEMT (In 0. 75 Ga 0. 25 As channel) - NGST, 2007 p. 223, IEEE MWCL • S. N. U. EE Microwave Devices 2008

Sub-Millimeterwave Receiver Performance FP : Fabry-Perot SHP : Sub-Harmonically Pumped 340 GHz/16 d. B

Sub-Millimeterwave Receiver Performance FP : Fabry-Perot SHP : Sub-Harmonically Pumped 340 GHz/16 d. B gain LNA MMICs with 35 nm In. P HEMT (In 0. 75 Ga 0. 25 As channel) - NGST, 2007 • S. N. U. EE Microwave Devices 2008

Basic Principles of SIS Mixers • SIS: superconducting tunnel junction • SIS is a

Basic Principles of SIS Mixers • SIS: superconducting tunnel junction • SIS is a “submillimeter photodiode” – One electron per photon absorbed – “photon-assisted tunneling” • S. N. U. EE Microwave Devices 2008

Superconducting Bolometer for Terahertz Detection Cu/Nb metal stack Bolometer Array • S. N. U.

Superconducting Bolometer for Terahertz Detection Cu/Nb metal stack Bolometer Array • S. N. U. EE Microwave Devices 2008

Fermi Level Pinning q Bn constant regardless of metal Various Models – Fermi-level pinning

Fermi Level Pinning q Bn constant regardless of metal Various Models – Fermi-level pinning (Bardeen limit) Process의 영향 • Metal deposition process • Surface Preparation Method • Thermal annealing Ref. : H. Hasegawa, IPRM 1998, p. 451 • S. N. U. EE Microwave Devices 2008

Unified Defect Model for Schottky Barrier & Surface - X-ray photoelectron spectroscopy - MBE에서의

Unified Defect Model for Schottky Barrier & Surface - X-ray photoelectron spectroscopy - MBE에서의 금속막 증착 에 의해 q B 측정 Ec n-type Ga. As EC ~ 0. 75 e. V q Bn ~ 0. 5 e. V p-type Ga. As EFm Ev 1. 42 e. V ~ 0. 75 e. V ~ 0. 5 e. V EFN ESA ESD EFP EN < Unified Defect Model for Ga. As > EF EV 5 10 15 20 deposited metal(Å) EC ( n-type Ga. As) OOOO ---Wsn n-Ga. As Surface of n-Ga. As ++++ OOOO Wsp p-Ga. As Surface of p-Ga. As * Model의 2개(+, -) level 존재는 이견이 없으나 level의 크기, 값에 대해서는 아직 논의/연구 • S. N. U. EE Microwave Devices 2008

Semi-Insulating Ga. As or In. P Substrate • S. N. U. EE Microwave Devices

Semi-Insulating Ga. As or In. P Substrate • S. N. U. EE Microwave Devices 2008

Undoped Ga. As Semi-Insulating Substrate • S. N. U. EE Microwave Devices 2008

Undoped Ga. As Semi-Insulating Substrate • S. N. U. EE Microwave Devices 2008