Microwave Devices Microwave Passive Devices I 8 2008








![W-band Broad-Side Coupler on MCM-D substrate [ Cross-section of broad-side coupler ] [ Microphotograph W-band Broad-Side Coupler on MCM-D substrate [ Cross-section of broad-side coupler ] [ Microphotograph](https://slidetodoc.com/presentation_image_h/9a4d74d3d87276ee06bdb7b1139c824d/image-9.jpg)


























- Slides: 35
Microwave Devices - Microwave Passive Devices I – 8 2008 / 1 학기 서광석 • S. N. U. EE Microwave Devices 2008
Other Passive Components * coupler * hybrid * ring circuits * power combiner/ divider “Analysis and Design of Microwave Circuits” -K. C. Gupta “Microwave Engineering”, Chap. 7, Wiley, - D. M. Pozar, * Microstrip Ring “Microwave Ring Circuits and Antennas” -Kai Chang. Witey, 1996 • S. N. U. EE Microwave Devices 2008
Three or Four Port Network • S. N. U. EE Microwave Devices 2008
Four Port - 90° Hybrid and 180° Hybrid 180 o Hybrid • S. N. U. EE Microwave Devices 2008
Coupled Transmission Lines Edge Coupled • S. N. U. EE Broadside Coupled Microwave Devices 2008
Even–Odd Mode Analysis of Coupler ( I ) • S. N. U. EE Microwave Devices 2008
Even–Odd Mode Analysis of Coupler ( II ) Ref. : D. M. Pozar, Microwave Engineering, Chap. 7, Wiley • S. N. U. EE Microwave Devices 2008
Even–Odd Mode Analysis of Coupler ( III ) V 2 , V 3 90° Hybrid • S. N. U. EE Microwave Devices 2008
W-band Broad-Side Coupler on MCM-D substrate [ Cross-section of broad-side coupler ] [ Microphotograph of the fabricated coupler ] For W-band (75 GHz ~ 110 GHz) range l Transmission and coupling loss of 3. 8 ± 0. 2 d. B l Better than 18 d. B return loss l Better than 17 d. B isolation [ Measured results of W-band broad-side coupler ] • S. N. U. EE Microwave Devices 2008
Wilkinson Power Divider Ref. : T. H. Lee, Planar Microwave Engineering, Chap. 7, Cambridge Lumped Element Networks for Approximating λ/4 Line • S. N. U. EE Lumped Element Wilkinson Power Divider Microwave Devices 2008
W-band Wilkinson Power Divider on MCM-D substrate 100Ω Ni. Cr TFR [ Structure of Wilkinson power divider ] (a) basic structure (b) Modified structure [ Microphotograph of the fabricated Power divider ] For W-band (75 GHz ~ 110 GHz) range l Less than 0. 8 d. B insertion loss l Better than 15 d. B matching and isolation [ Measured results of W-band Wilkinson power divider ] • S. N. U. EE Microwave Devices 2008
Lumped Element Power Divider & 180° Hybrid Power Divider 180° Hybrid Ref. : T. H. Lee, Planar Microwave Engineering, Chap. 7, Cambridge S. J. Parisi, “ 180° Lumped Element Hybrid, ” IEEE MTT Symp. , p. 1243, 1989 • S. N. U. EE Microwave Devices 2008
Millimeter-Wave Inductor & Transformer Millimeter-Wave Inductor 300 p. H, Q > 12 @60 GHz 1: 1 Vertically Stacked Transformer 240 p. H each winding 29 m Applied to 60 GHz Mixer, LNA, VCO MMICs Ref. : M. Gordon, et al. , U. Toronto • S. N. U. EE Microwave Devices 2008
Balun Layout Ref. : A. M. Niknejad, et al. , U. C. Berkeley • S. N. U. EE Microwave Devices 2008
Transition Structures * CPW-to-slot(CPS) transition / slot(CPS) antenna를 집적화한 CPW MMIC • CPW-to-slot transition • CPW-to-CPS transition /4 GND Slot GND CPW CPS CPW Radial stub for broadband open * Reference on transition structures: K. C. Gupta * Open microstrip radial stub (AC short) - Ref. : R. Sorrentino, IEEE MGWL, p. 482, 1992 R DC MIM ( 일본에서 popular) • S. N. U. EE (미국에서 popular) /4 rectangular stub에 비해 small area, small radiation loss, & wide bandwidth ( : 30 ~90 ) Microwave Devices 2008
Various CPW-to-Slot Line Transitions Ref. : C. -H. Ho, et al, IEEE Trans. MTT, p. 2440, Dec. 1994 • S. N. U. EE Microwave Devices 2008
CPW-to-Slot Line Transition with Lumped Elements Y-S. Lin, et al, IEEE Trans. MTT, p. 2322, Dec. 2001 • S. N. U. EE Microwave Devices 2008
Ultra-wideband CPW-to-CPS Transition Insertion loss of back-to-back transition The currents flowing on two ground planes of CPW are combined with the same phase and transferred to the ground strip of CPS. Ref. : S. Kim, et al, Electronics Letters, p. 622, June 2002 • S. N. U. EE Return loss of back-to-back transition Microwave Devices 2008
Microstrip-to-CPW Transition On the different surfaces On the same surface Ref. : L. Zhu, et al, IEEE T. MTT. , p. 1517, 2004 • S. N. U. EE Microwave Devices 2008
EM Coupled Wideband CPW-to-Microstrip Transition Strong magnetic field through the slot line opening - 100 m Si wafer - 0. 3 d. B insertion loss (@75 -110 GHz) - better than 10 d. B return loss (@75 - 110 GHz) Ref. : T. J. Ellis, et al, p. 629, 1999 IEEE MTT-S Digest • S. N. U. EE Microwave Devices 2008
FGCPW-to-Microstrip Transition - 0. 2 d. B insertion loss (@85 -100 GHz) - better than 17 d. B return loss (@85 - 100 GHz) - wider bandwidth with radial stub structure (85 - 110 GHz) (Ref. : G. P. Gauthier, et al, p. 107, 1998 IEEE MTT-S Digest) • S. N. U. EE Microwave Devices 2008
Coplanar Stripline (CPS) Ref. : Y. -H. Suh, et al, IEEE T. MTT, p. 1289, May 2002 f = 10 GHz, W = 1. 5 mm fabricated on the RT/Duroid 5870 substrate with 1 -oz copper, 20 -mil substrate height, and the dielectric constant of 2. 33 • S. N. U. EE Microwave Devices 2008
CPW–Slotline Transition CPW-fed Vivaldi Antenna Ref. : K. -P. Ma, et al, IEEE T. MTT, p. 426, April 1999 • S. N. U. EE Microwave Devices 2008
CPW-to-Rectangular Waveguide Transition Top View Ref. : V. S. Möttönen, et al, IEEE T. MTT, p. 1836, August 2004 Micromachined CPW-to-Waveguide Transition (Ref. : Y. Lee, et al, IEEE T. MTT, p. 1001, 2004) • S. N. U. EE Microwave Devices 2008
CPW-to-Waveguide Transition with Fin-Line Taper Ref. : V. S. Mottonen, et al, IEEE Microwave and Wireless Component Letters, p. 119, Feb. 2005 • S. N. U. EE Microwave Devices 2008
Waveguide-to-Microstrip Antipodal Finline Transitions Average insertion loss ; 0. 74 d. B Ref. : D. -W. Kim, et al, Asia-pacific Microwave Conference, p. 189, 2000 • S. N. U. EE Microwave Devices 2008
Broad-Band Microstrip-to-Waveguide Transition Quasi-Yagi Antenna Ref. : N. Kaneda, et al, IEEE T. MTT, p. 2562, Dec. 1999 • S. N. U. EE Microwave Devices 2008
Antenna Basics High gain directional 14 d. Bi Isotropic 0 d. Bi Dipole 2. 2 d. Bi Array Antenna (Phases Array) • S. N. U. EE Microwave Devices 2008
Basics of Yagi Antenna Yagi-Uda Antenna Invented by Yagi and Uda of Tohoku U. in 1926 Direction of Maximum Gain • S. N. U. EE Length ~ λ/2 Spacing ~ λ/4 Microwave Devices 2008
24 -GHz High-Gain Yagi–Uda Antenna Array E-plane antenna patterns a directivity of 9. 3 d. B, a front-to-back ratio of 11 d. B, and a bandwidth of 2. 5– 3% ( -3 d. B beamwidth : 53. 6° ) Ref. : P. R. Grajek, et al, IEEE T. Antennas and Propagation, p. 1257, May 2004 • S. N. U. EE Microwave Devices 2008
Microstrip Patch Antenna • S. N. U. EE Microwave Devices 2008
Integrated Antenna Features of mm-wave antenna l Miniaturization l Good resolution l Integration with RF front end l Frequency selectivity in propagation l Broadband usage l High directivity [ mm-wave patch antenna ] Applications l Automobile radar l Wireless communication l Sensors for robotics l Military application l Road traffic • S. N. U. EE Microwave Devices 2008
Integrated Microstrip Patch Antenna Array IMEC’s 5 GHz Integrated Antenna (2. 3 x 2. 3 cm 2) - Vertical Integration U. Mass. ’s 39 GHz Integrated Antenna Array(1 x 4) with BCB & Si Substrate - Lateral Integration Alumina substrate (100 m) for antenna • S. N. U. EE Microwave Devices 2008
Integrated Antenna with Thick Film Multilayer Ceramic Substrate Hitachi’s 77 GHz Car Radar Module - Ceramic (Alumina), 25 x 3. 4 mm 2 • S. N. U. EE Microwave Devices 2008
Long Range Radar Sensor for Automobile Large Patch Array for Beam Shaping (Toyoda) • S. N. U. EE Microwave Devices 2008