Microwave Devices Microwave Passive Devices I 6 2008

  • Slides: 21
Download presentation
Microwave Devices - Microwave Passive Devices I - 6 2008 / 1 학기 서광석

Microwave Devices - Microwave Passive Devices I - 6 2008 / 1 학기 서광석 • S. N. U. EE Microwave Devices 2008

Basics of Quality Factor Energy stored during a cycle Energy dissipated per cycle (m:

Basics of Quality Factor Energy stored during a cycle Energy dissipated per cycle (m: mass, b: damping, K: stiffness) BAW • S. N. U. EE SAW, Two-port Microwave Devices 2008

Importance of High-Q Resonator High-Q resonators play an important role in microwave circuits. Ø

Importance of High-Q Resonator High-Q resonators play an important role in microwave circuits. Ø Insertion loss of small-ripple Chevyshev bandpass filter - fo: center frequency - BW: bandwidth of the filter - Qu: unloaded Q of the resonator q High-Q resonator Narrow-band filter with a low insertion loss Ø Phase noise of oscillator - F: noise figure of the active circuit - Pavs: available signal power - QL: loaded Q of the resonator q High-Q resonator high-frequency stable and low-phasenoise oscillator • S. N. U. EE Microwave Devices 2008

Nanoelectromechanical (NEMS) Resonator ( Ref : K. L. Ekinci, et. al. , “Nanoelectromechanical systems,

Nanoelectromechanical (NEMS) Resonator ( Ref : K. L. Ekinci, et. al. , “Nanoelectromechanical systems, ” Review of Scientific Instruments 76, 061101, 2005) • S. N. U. EE Microwave Devices 2008

Q of Various Structures Q of various resonators Structure Q Rectangular Waveguide (nonplanar) 8000

Q of Various Structures Q of various resonators Structure Q Rectangular Waveguide (nonplanar) 8000 Slot resonator over cavity 500 Microstrip over membrane 234 Microstrip over Si 125 Dielectric Resonator (DR) >10, 000 QMin QMax Stability (ppm/ºC) LC Resonators 50 100 Cavity resonators 500 1, 000 10 Dielectric resonators 2, 000 10, 000 1 SAW devices 300 10, 000 0. 1 Crystals 50, 000 1, 000 0. 01 • S. N. U. EE ( Ref : Howard Hausman, MITEQ, 2007) Microwave Devices 2008

MEMS Resonator Wine-Glass Disk Q ~ 161, 000 @ 62 MHz (vac) Q ~

MEMS Resonator Wine-Glass Disk Q ~ 161, 000 @ 62 MHz (vac) Q ~ 8, 000 @ 98 MHz (air) Freq. -Q Product ~1. 0× 1013 Radial-Contour Mode Disk Q >10, 000 @ 1. 9 GHz (vac) & (air) Freq. -Q Product ~2× 1013 ( Ref : Clark T. -C. Nguyen, “MEMS technology for timing and frequency control, ” IEEE Trans. Ultrasonics, Ferroelectrics and Frequency control, p. 251, 2007) • S. N. U. EE Microwave Devices 2008

Waveguide Resonator Rectangular Waveguide Air-filled cubic waveguide ( Ref : Collin, text) Three Cavity

Waveguide Resonator Rectangular Waveguide Air-filled cubic waveguide ( Ref : Collin, text) Three Cavity Filter Qun of Cavity = 506 @10 GHz • S. N. U. EE Microwave Devices 2008

Tunable RF Inductor with Metal. MUMPs Process (Ref. : www. memscap. com ) d

Tunable RF Inductor with Metal. MUMPs Process (Ref. : www. memscap. com ) d ; maximum separation of wires MEMS Foundary Process (MEMSCAP) – Metal. MUMPs, Poly. MUMPs, SOIMUMPs Detail of Metal. MUMPs Process - plated 20μm Ni/0. 5μm Au - 25μm deep Si trench with KOH etch (price: 1 cmx 1 cm chip – 15 die delivered $3, 700 academic) • S. N. U. EE Microwave Devices 2008

Micromachined Microstrip Resonator Oscillator [ Micromachined planar resonator with membrane structure] [ Fabricated micromachined

Micromachined Microstrip Resonator Oscillator [ Micromachined planar resonator with membrane structure] [ Fabricated micromachined oscillator] q Measured loaded Q factor of the resonator : 190 with a coupling -4. 6 d. B q 10 -d. B improvement in phase noise with a micromachined planar resonator [ Fabricated micromachined oscillator with device mounted and ground plane cover assembled] • S. N. U. EE ( Ref : A. R. Brown, et. al. , IEEE Trans. MTT, p. 1504, 1999 ) Microwave Devices 2008

Rectangular Coaxial Transmission Line in 3 D-MERFS Program DARPA’s 3 -D Micro. Electromagnetic Radio

Rectangular Coaxial Transmission Line in 3 D-MERFS Program DARPA’s 3 -D Micro. Electromagnetic Radio Frequency Systems Program - ‘ 04 -’ 07, 3 D-MERFS Program (BAE, Rohm & Haas, and U. Colorado) Rohm & Haas’s Poly. Strata. TM Photoresist - sacrificial high-aspect ratio photoresist (50 um to 100 um thick) (Ref). “An Enabling New 3 D Architecture for Microwave Components and Systems, ” Microwave Journal, Feb. 2008 - CMP for planarization - 10~100μm thick Cu (electroplated) - 5~10 metal layer process 310μm tall 50Ω coaxial line Unloaded Q Qun=490 @26 GHz • S. N. U. EE Microwave Devices 2008

Micromachined High-Q Cavity Resonator Silicon wafer [ An X-band micromachined resonator ] type [

Micromachined High-Q Cavity Resonator Silicon wafer [ An X-band micromachined resonator ] type [ S-parameters for the resonator ] Size (mm x mm) Qu Nonplanar Metal (rectangular) 19. 8 x 22. 9 x 10. 2 8119 Metal (rectangular) 16 x 32 x 0. 465 526 planar Micromachined cavity 16 x 32 x 0. 465 506 Membrane-microstrip 5. 3 x 7. 1 x 0. 35 234 Microstrip 2. 65 x 3. 55 x 0. 5 125 • S. N. U. EE ( Ref : J. Papapolymerou, et. al. , IEEE MGWL, p. 168, 1997) Comparison of measured Q for several resonators at X-band @ 10. 4 GHz Microwave Devices 2008

Micromachined Cavity Resonator Oscillator [ Photograph of a fabricated oscillator ] @ 33 GHz

Micromachined Cavity Resonator Oscillator [ Photograph of a fabricated oscillator ] @ 33 GHz [ Schematic diagram of the micromachined cavity resonator coupled to the Ga. As-based oscillator ] q Estimated Q-factor of the cavity : around 130 (without de-embedding) q 18 -d. B improvement in phase noise with a micromachined cavity resonator • S. N. U. EE [ Comparison of oscillation spectrum between MCO and free running oscillator ] ( Ref : Y. Kwon, et. al. , IEEE MGWL, p. 360, 1999 ) Microwave Devices 2008

EFAB – Prototyping RF-MEMS Process EFAB Process of Microfabrica Inc. (Selective Electroplating Technique) (

EFAB – Prototyping RF-MEMS Process EFAB Process of Microfabrica Inc. (Selective Electroplating Technique) ( Ref : E. D. Marsh, et. al. , IEEE Trans. MTT, p. 78, 2007 ) • S. N. U. EE Qun of Cavity @44 GHz Microwave Devices 2008

Micromachined Resonators for Higher Q-factor q Micromachined cavity resonator using the split-block technique q

Micromachined Resonators for Higher Q-factor q Micromachined cavity resonator using the split-block technique q Micromachined hemispheroidal cavity resonator Silicon <100> [ Cross-section view of micromachined cavity resonator using the split-block technique] [ Cross-section view of micromachined hemispheroidal cavity resonator ] Measured unloaded Q factor of 4550 at 29. 326 GHz à Measured unloaded Q factor are 1426 and 909 at 76. 39, respectively ( Ref : S. R. Mc. Llland, et. al. , IEE Proc. Microw. Antennas Propag. , October. 2004, p. 450 -454) ( Ref : S. R. Mc. Llland, et. al. , IEEE Trans. MTT, April. 2008, p. 982 -990) • S. N. U. EE Microwave Devices 2008

FBAR and SMR-BAW Solidly FBAR Mounted structure Resonator of Avago (SMR) BAW - Infineon

FBAR and SMR-BAW Solidly FBAR Mounted structure Resonator of Avago (SMR) BAW - Infineon • S. N. U. EE Microwave Devices 2008

Substrate Integrated Waveguide ( I ) – PCB/MCM-L ( Ref : D. Deslandes and

Substrate Integrated Waveguide ( I ) – PCB/MCM-L ( Ref : D. Deslandes and K. Wu, IEEE Trans. MTT, Feb. 2003, p. 593 -596) • S. N. U. EE Microwave Devices 2008

Substrate Integrated Waveguide ( II ) ( Ref : B. Liu, et al. ,

Substrate Integrated Waveguide ( II ) ( Ref : B. Liu, et al. , IEEE MWCL, Jan. 2007, p. 22 -24) • S. N. U. EE Microwave Devices 2008

Micromachined Cavity Resonator Filter [ Micromachined cavity resonator filter] [ Measured results of the

Micromachined Cavity Resonator Filter [ Micromachined cavity resonator filter] [ Measured results of the filter ] [ Side-view of micromachined cavity resonator filter ] • S. N. U. EE ( Ref : L. Harle, et. al. , IEEE Trans. MTT, p. 1598, 2004 ) Microwave Devices 2008

Surface Micromachined Cavity Resonator Filter [ surface micromachining cavity resonator filter ] [ Fabrication

Surface Micromachined Cavity Resonator Filter [ surface micromachining cavity resonator filter ] [ Fabrication flow ] @ 60 GHz q Insertion loss of 2 -pole filter: 1. 42 d. B q Insertion loss of 4 -pole filter: 2. 45 d. B • S. N. U. EE ( Ref : B. Pan, et. al. , IEEE Trans. MTT, p. 959, 2008 ) Microwave Devices 2008