Microwave Devices Microwave Passive Devices I 3 2008

  • Slides: 24
Download presentation
Microwave Devices - Microwave Passive Devices I - 3 2008 / 1 학기 서광석

Microwave Devices - Microwave Passive Devices I - 3 2008 / 1 학기 서광석 • S. N. U. EE Microwave Devices 2008

Attenuation (1) Attenuation R VVV UUU VVV G R – conductor loss c=R/2 Zo

Attenuation (1) Attenuation R VVV UUU VVV G R – conductor loss c=R/2 Zo G – dielectric loss d=GZo/2 Total loss = c + d + r ( radiation loss ) 1. conductor loss top metal bottom metal x - edge에 많은 전류 flow Skin depth - skin depth Bottom side 전류가 dominant • S. N. U. EE (top metal) Microwave Devices 2008

Attenuation (2) • • Metal의 종류 ( Si IC ) : Al Cu (large

Attenuation (2) • • Metal의 종류 ( Si IC ) : Al Cu (large ) ( RC time constant , delay ) (Ga. As MMIC) : Au, W/Au (high cost) (largest , 안정성) (thick) 2. dielectric loss ( ) E 1(air), E 2 (dielectric) 의 모양이 전체가 air인 경우와 같다고 가정할 때 [Ref. Collin pp. 153~155] * ceramic-loaded teflon : 30 GHz 이상에서 loss가 급격히 증가 (laser drilling for via) quartz for millimeter wave applications • S. N. U. EE Microwave Devices 2008

Attenuation (3) 3. radiative loss radiation Ref. ”Handbook of Microwave Integrated Circuits” by R.

Attenuation (3) 3. radiative loss radiation Ref. ”Handbook of Microwave Integrated Circuits” by R. K. Hoffman conductor–backed dielectric waveguide leakage ( lowest mode : TMo with fc=0 ) - Pradiation f 2 - at f=fs : strong coupling for leakage ex) h=0. 5 mm, r=9. 6 h=0. 1 mm, Ga. As MMIC • S. N. U. EE fs = 60 GHz fs ~ 300 GHz Microwave Devices 2008

Microstrip Discontinuity (1) microstrip discontinuity Ref. 1. K. C Gupta 2. P. B Katehi

Microstrip Discontinuity (1) microstrip discontinuity Ref. 1. K. C Gupta 2. P. B Katehi et. al IEEE Trans. MTT p. 1029 E, H의 연속성을 만족시키기 위해 higher order mode , surface mode, radiation mode등이 excite. 1. open discontinuity Open end /4 circuit VVV (bias circuit) Vdc • S. N. U. EE Microwave Devices 2008

Microstrip Discontinuity (2) open radiation Coc VVV Coc r Goc radiation Coc Goc Coc

Microstrip Discontinuity (2) open radiation Coc VVV Coc r Goc radiation Coc Goc Coc Freq. <full-wave analysis> Coc • S. N. U. EE VVV UUU v Modified equivalent circuit C L R Coc , C, L, R = functions of w/h Ref : K. C. Gupta, et al. , “Microstrip Lines and Slotlines, ” Chap. 3, pp. 182 -183. Microwave Devices 2008

Microstrip Discontinuity (3) 2. gap • Coupler에 응용 • 작은 C 필요 시 응용

Microstrip Discontinuity (3) 2. gap • Coupler에 응용 • 작은 C 필요 시 응용 <simple model> 3. bend UUU current flow가 작은 영역 - capacitive compensated bend w r r>3 w • S. N. U. EE Chamfered bend d s Soptimum/d =0. 52+0. 65 exp(-1. 35 w/h) Microwave Devices 2008

Microstrip Discontinuity (4) 4. other discontinuities UUU step in width T junction improved T

Microstrip Discontinuity (4) 4. other discontinuities UUU step in width T junction improved T junction w UUU • S. N. U. EE 0. 7 w 0. 3 w 2 w or 2 h (longer) Microwave Devices 2008

Microwave Passive Elements – Resistor (1) Microwave Passive Elements ----- R , L ,

Microwave Passive Elements – Resistor (1) Microwave Passive Elements ----- R , L , C, coplanar, transformer… Ref. “MMIC Design” chap. 3 1. Resistor - impedance matching Zo= 50 (precision) - bias resistor RG ~ 수백 RG (up to K ) Ø metal resistor (~50 : precision) Au t Au Ga. As W • R = Rㅁ*L/W = ( /t)* L/W precision을 위해서는 W , L density를 증가하기위해서는 , t L • S. N. U. EE Microwave Devices 2008

Microwave Passive Elements – Resistor (2) • Ni. Cr : 60 ~ 600 -cm

Microwave Passive Elements – Resistor (2) • Ni. Cr : 60 ~ 600 -cm ex) Ni 0. 2 Cr 0. 8 , t= 900 Å : 180 -cm, Rㅁ=20 / (up to 40 / - industry standard) - (가열) electron beam evaporation • Ta. N : 280 -cm (좀 더 정확한 저항 값 구현) - nitrogen 분위기에서 Ta 증착 (reactive sputtering) Ø semiconductor resistor (bias resistor) I N -Ga. As Linear 영역에서만 사용 S. I. Ga. As V Rㅁ: 10 ~20% (부정확) ~500 /ㅁ • S. N. U. EE (large) • E < 3 k. V/cm 가 되도록 저항 길이 L을 결정 Microwave Devices 2008

Applications of Lumped Inductor ( I ) l Power Amplifier Application ( I )

Applications of Lumped Inductor ( I ) l Power Amplifier Application ( I ) Conventional Amplifier Bandwidth Enhanced Amplifier Shunt peaking Bandwidth ↑ ( Ref : S. S. Mohan, et al. , IEEE J. Solid- State Circuits, March 2000, p. 346~355) • S. N. U. EE Microwave Devices 2008

Applications of Lumped Inductor ( II ) l Power Amplifier Application ( II )

Applications of Lumped Inductor ( II ) l Power Amplifier Application ( II ) Bandwidth Enhanced Amplifier with shunt inductor L↑ L↑ ( Ref : S. S. Mohan, et al. , IEEE J. Solid- State Circuits, March 2000, p. 346~355) • S. N. U. EE Microwave Devices 2008

Applications of Lumped Inductor ( III ) l Voltage Controlled Oscillator (5 GHz) l

Applications of Lumped Inductor ( III ) l Voltage Controlled Oscillator (5 GHz) l Q of inductor ↑ l Phase Noise ↓ ( Ref : J. N. Burghartz, et al. , IEEE J. Solid- State Circuits, Dec. 1998, p. 2028~2034) • S. N. U. EE Microwave Devices 2008

Applications of Lumped Inductor ( IV ) l l Band Pass Filter (5. 4

Applications of Lumped Inductor ( IV ) l l Band Pass Filter (5. 4 GHz) Q of inductor ↑ l Q of BPF ↑, Insertion loss ↓ ( Ref : J. N. Burghartz, et al. , IEEE J. Solid- State Circuits, Dec. 1998, p. 2028~2034) • S. N. U. EE Microwave Devices 2008

Microwave Passive Elements – Inductor (1) 2. Inductor Wire-bonding Air-bridge to prevent metal shortage

Microwave Passive Elements – Inductor (1) 2. Inductor Wire-bonding Air-bridge to prevent metal shortage < spiral inductor > Ø advanced inductor 구조 gap for small C - Ferrite core를 사용하면 L 증가 (수백 MHz 에서는 Ferrite core 성질 잃음. ) - microwave 응용으로 Ferrite가 없는 air-gap inductor 사용 C substrate * spiral 에 비해 high L, small C * MEMS process로 제작 가능 (yield, cost problem) • S. N. U. EE Microwave Devices 2008

Microwave Passive Elements – Inductor (2) Ø inductance 계산 • Self-inductance (L, w: cm)

Microwave Passive Elements – Inductor (2) Ø inductance 계산 • Self-inductance (L, w: cm) w w s • Mutual-inductance 길이 L • w , s L - advanced processes t 6 m s w 10 m • w가 작으면 loss (t를 증가시켜 loss 감소 가능) • Industry standard : t=3 m , Au s/w=5 m /5 m, 10 m /10 m • S. N. U. EE 2. 5 m 2 m <MEMS process> <다층금속공정> - Si 공정 Microwave Devices 2008

Microwave Passive Elements – Inductor (3) Ø inductor for Si RF-IC spiral metal track

Microwave Passive Elements – Inductor (3) Ø inductor for Si RF-IC spiral metal track Cground • conductive substrate로 인해 Csub Si substrate • typical substrate 20 -cm (conductive) Solutions (i) highly resistive substrate ~ 104 -cm availability , cost problem. (ii) inductor metal track 과 substrate 사이에 절연체 삽입 Csub • S. N. U. EE Microwave Devices 2008

Microwave Passive Elements – Inductor (4) 절연체 Si. O 2 substrate r ~ 4

Microwave Passive Elements – Inductor (4) 절연체 Si. O 2 substrate r ~ 4 polyimide r ~ 3. 4 BCB (Csub 감소) Si substrate r ~ 2. 6 <다층 금속공정 응용> Ø inductor의 layout 효과 - Si RF IC에서는 inductor의 구현이 동작 주파수를 제한. large inductance (길이 길어짐) large fresonant & Q v 각 turn의 metal폭과 gap, core의 면적의 optimization에 의해 inductor의 Q값 최대화 – 실험 및 전자장 simulation • S. N. U. EE Microwave Devices 2008

Microwave Passive Elements – Capacitor (1) 3. Capacitor <MIM capacitor> - 작은 series 저항

Microwave Passive Elements – Capacitor (1) 3. Capacitor <MIM capacitor> - 작은 series 저항 절연체 v Si DRAM에서 절연체 기술의 발전 : r 면적 줄임 (higher capacitance) Si. O 2 : r 4 Ta 2 O 5 : r =20~25 Hf. O 2, Zr. O 2 : r ~ 25 Al 2 O 3 : r =10 (현재) (Ba 0. 5 Sr 0. 5)Ti. O 3 : r > 300 (future) * Ta 2 O 5 : tan = 0. 02, unstable with bottom electrode * (Ba 0. 5 Sr 0. 5)Ti. O 3 - sputtering /annealing (550 C~800 C) 공정 사용 - 고온 열처리로 Ga. As에서는 사용 못함 (thermal damage) - unstable with bottom electrode : difficult to control stoichiometry • S. N. U. EE Microwave Devices 2008

Microwave Passive Elements – Capacitor (2) Ø MIM capacitor M 2 bottom metal Rt

Microwave Passive Elements – Capacitor (2) Ø MIM capacitor M 2 bottom metal Rt Lt UU VV M 1 C G UU VV VV UU • S. N. U. EE w 1 VV air bridge ( ( M 2 L 1 Cfringe Lb Rb M 1 Microwave Devices 2008

Microwave Passive Elements – Capacitor (3) v QMIM - bottom metal에 의해 결정 •

Microwave Passive Elements – Capacitor (3) v QMIM - bottom metal에 의해 결정 • Bottom metal - smooth surface를 위해 evaporation (0. 5 ~ 0. 8 m Au) • Top metal QMIM ~100 - electroplating (~3 m Au) (3 p. F capacitor) 1/QMIM = 1/Qconductor + 1/Qdielectric CMIM ~50 QMIM , fresonant CMIM 최대값 – 동작 주파수와 chip size에 의해 ~10 GHz CMIM 제한, 20 p. F 이하 (MMIC) f • • CMIM Csub substrate GND • S. N. U. EE • Csub § Csub 에 의해 signal loss 발생 fresonant Microwave Devices 2008

Microwave Passive Elements – Capacitor (4) v MIM capacitor layout -- metal 폭의 변화에

Microwave Passive Elements – Capacitor (4) v MIM capacitor layout -- metal 폭의 변화에 의한 discontinuity 효과를 감소시켜주는 layout (정사각형 직사각형) ( ( ( M 2 M 1 Ø Interdigital capacitor (0. 05~1 p. F) • Metal 두께 ~ 3 m • 동일 metal로 형성 • Precision capacitance • Unit area capacitance ~0. 3% of unit area capacitance of MIM • S. N. U. EE Microwave Devices 2008

Substrate Integrated Waveguide ( I ) ( Ref : D. Deslandes and K. Wu,

Substrate Integrated Waveguide ( I ) ( Ref : D. Deslandes and K. Wu, IEEE Trans. MTT, Feb. 2003, p. 593 -596) • S. N. U. EE Microwave Devices 2008

Substrate Integrated Waveguide ( II ) ( Ref : B. Liu, et al. ,

Substrate Integrated Waveguide ( II ) ( Ref : B. Liu, et al. , IEEE MWCL, Jan. 2007, p. 22 -24) • S. N. U. EE Microwave Devices 2008