Microbial Ecology Chapter 30 Principles of Microbial Ecology

  • Slides: 74
Download presentation
Microbial Ecology Chapter 30

Microbial Ecology Chapter 30

Principles of Microbial Ecology, Definitions n Ecology n n Ecosystem n n The study

Principles of Microbial Ecology, Definitions n Ecology n n Ecosystem n n The study of relationships among organisms and their environment. Includes all of the biotic (living) components and the abiotic (physical and chemical) components of an environment. Biosphere n That region of the earth that is inhibited by living organisms.

Principles of Microbial Ecology n Definitions n Biodiversity n n Biomass n n Evenness

Principles of Microbial Ecology n Definitions n Biodiversity n n Biomass n n Evenness of distribution of the # of species present Weight of all organisms present Ecological Community n Comprised of a variety of different species in a given environment; more stable than an environment with fewer organisms.

Principles of Microbial Ecology n Ecological Niche n n The role that an organism

Principles of Microbial Ecology n Ecological Niche n n The role that an organism plays in its particular ecosystem as well as the physical space it occupies. Microenvironment n n Environment immediately surrounding an individual cell Biofilm (Fig. 30. 1, pg. 766)

Principles of Microbial Ecology n Indigenous n n Native organisms Nonindigenous n Temporary inhabitants

Principles of Microbial Ecology n Indigenous n n Native organisms Nonindigenous n Temporary inhabitants

Principles of Microbial Ecology n Nutrient Acquisition n Primary Producers n Autotrophs n n

Principles of Microbial Ecology n Nutrient Acquisition n Primary Producers n Autotrophs n n n Convert CO 2 organic material Photoautotrophs – plants, algae, cyanobacteria Anoxygenic phototrophs n Use sunlight for energy Chemolithoautotrophs n Oxidize inorganic compounds for energy Food source for consumers and decomposers

Principles of Microbial Ecology n Consumers n Heterotrophs n n n Utilize organic material

Principles of Microbial Ecology n Consumers n Heterotrophs n n n Utilize organic material Food chain n Herbivores – primary consumers n Carnivores – secondary consumers n Carnivores – tertiary consumers Food web n Interacting food chains

Principles of Microbial Ecology n Decomposers n Heterotrophs n n Primarily bacteria and fungi

Principles of Microbial Ecology n Decomposers n Heterotrophs n n Primarily bacteria and fungi Digest remains or primary producers and consumers n Detritus - Fresh or partially decomposed organic matter Specialize in digesting complex materials Mineralization n Complete breakdown of organic matter into inorganic molecules such as ammonia, sulfates, phosphates & CO 2

Principles of Microbial Ecology n Low Nutrient Environments n Common in nature n Dilute

Principles of Microbial Ecology n Low Nutrient Environments n Common in nature n Dilute aqueous solutions n n n Lakes, rivers, streams Distilled water reservoirs Respiratory equipment

Principles of Microbial Ecology n Microbial Competition n Ability of microbes to compete successfully

Principles of Microbial Ecology n Microbial Competition n Ability of microbes to compete successfully for a habitat generally related to n n Rate at which organism multiples Ability to withstand adverse environmental conditions

Principles of Microbial Ecology n Antagonism n Promotes biodiversity through competition n Bactericins n

Principles of Microbial Ecology n Antagonism n Promotes biodiversity through competition n Bactericins n Proteins produced by some soil microbes that kill closely related strains of bacteria

Principles of Microbial Ecology n Microbes and Environmental Change n Examples n Enzyme induction

Principles of Microbial Ecology n Microbes and Environmental Change n Examples n Enzyme induction n n Inactivates mercury Only formed when mercury is present Antibiotic resistant bacteria n Growth and metabolism of organism can change environment. n n Figure 30. . 4, pg. 768

Principles of Microbial Ecology n Microbial Communities n Biofilms (discussed in ch. 4) n

Principles of Microbial Ecology n Microbial Communities n Biofilms (discussed in ch. 4) n Microbial Mat n A thick, dense, highly organized structure composed of distinctive layers (fig. 30. 5, pg. 769)

Principles of Microbial Ecology n Microbial Ecology Studies n Traditional Cultures n Microscopy n

Principles of Microbial Ecology n Microbial Ecology Studies n Traditional Cultures n Microscopy n n Molecular Techniques n Microscopy n n Dyes that made are fluorescent by metabolic activities Fluorescence in situ hybridization (FISH) n Nucleic acid probes to observe only cells with specific nucleotide sequences

Principles of Microbial Ecology n n n Confocal scanning laser microscopes n To observe

Principles of Microbial Ecology n n n Confocal scanning laser microscopes n To observe sectional views of a 3 -dimensional specimen (biofilm) Polymerase chain reaction (PCR) n To detect only certain organisms n Denaturing gradient gel electrophoresis (DGGE) n PCR & DGGE studies conform that standard cultures techniques can be poor indicators of natural microbial population composition Genomics n Sequence information can apply to more than one group of microbes

Aquatic Habitats n Water n n Extremely efficient solvent Can absorb various wavelengths of

Aquatic Habitats n Water n n Extremely efficient solvent Can absorb various wavelengths of light n Important aspect relating to photosynthesis

Aquatic Habitats n Marine Environment n Oceans Cover more than 70% of earth’s surface

Aquatic Habitats n Marine Environment n Oceans Cover more than 70% of earth’s surface n Most abundant aquatic habitat n Represent 95% of global water n n Fresh Water Environment n Lakes, Rivers Fraction of global water source n Important source of fresh water n

Aquatic Habitats n Oceans and lakes n Characteristic zones influence distribution of microbial populations

Aquatic Habitats n Oceans and lakes n Characteristic zones influence distribution of microbial populations n Upper layers n n Sufficient light penetration - photosynthetic microorganisms Oligotrophic waters Nutrient poor n Growth of photosynthetic organisms & autotrophs limited by lack of phosphate, nitrate and iron n

Aquatic Habitats n Eutrophic waters n Nutrient rich (fig. 30. 6, pg. 770) n

Aquatic Habitats n Eutrophic waters n Nutrient rich (fig. 30. 6, pg. 770) n n n Photosynthetic activities in upper layers produce organic compounds Organic compounds permit growth of heterotrophs in lower layers Heterotrophs consume dissolved O 2 during metabolism n O 2 consumption can outpace slow rate of atmospheric O 2 diffusion into water n Can create a hypoxic environment

Aquatic Habitats n Definitions n Eutrophic n A body of water rich in nutrients

Aquatic Habitats n Definitions n Eutrophic n A body of water rich in nutrients n n Oligotrophic n n A body of water low in nutrients Eutrophication n n swamps, bog lakes, etc. Natural nutrient enrichment of waters Accelerated Eutrophication n Rapid loading of nutrients

Aquatic Habitats n Potable Water n n Safe for drinking Rainwater n Distillate n

Aquatic Habitats n Potable Water n n Safe for drinking Rainwater n Distillate n n Ground Water n n contaminated by air pollutants aquifers, underground lakes & rivers Surface Waters n Creeks, rivers, ponds, lakes

Aquatic Habitats n Factors Affecting Presence of Organisms n Nutrients n Oceans typically oligotrophic

Aquatic Habitats n Factors Affecting Presence of Organisms n Nutrients n Oceans typically oligotrophic n Inshore areas not as stable as deep ocean n Dramatically affected by run-off n Dead zone in Gulf of Mexico every spring

Aquatic Habitats n Oxygen (limiting factor) low solubility in water, quantities limited n well

Aquatic Habitats n Oxygen (limiting factor) low solubility in water, quantities limited n well mixed cold water ~8 -9 mg/l n warm water ~ 5 mg/l n Deep marine water is O 2 saturated due to mixing associated with tides, currents and wind n n Temperature - Worldwide 0 o. C to ~100 o. C

Aquatic Habitats n Freshwater environments n Oligotrophic lakes may have anaerobic layers due to

Aquatic Habitats n Freshwater environments n Oligotrophic lakes may have anaerobic layers due to thermal stratification n Epilimmion n n Hypolimmion n n Colder deeper layers (~5 o-4 o. C) May be anaerobic due consumption of O 2 by heterotrophs Water most dense at 4 o. C (39 o. F) Thermocline (~20 o-10 o. C) n n Warm upper layer (25 o-22 o. C) Generally oxygen rich due to photosynthetic organisms Generally aerobic Zone (layer) of rapid temperature change As weather cools, water mixes oxygenating deep water

Aquatic Habitats n Freshwater Environments n Rivers and Streams n Usually shallow and turbulent

Aquatic Habitats n Freshwater Environments n Rivers and Streams n Usually shallow and turbulent n n Facilitates O 2 circulation Generally aerobic Generally good sunlight penetration for photosynthesis Sheathed bacteria adhere to stable structures to allow utilization of nutrients flowing pass n Examples: Sphaerotilus & Leptothrix

Aquatic Habitats n Factors Affecting Presence of Organisms n Sunlight Penetration (Photic Zone) depth

Aquatic Habitats n Factors Affecting Presence of Organisms n Sunlight Penetration (Photic Zone) depth of sunlight penetration n algae & cyanobacteria n photosynthesis provides nutrients & oxygen for other organisms n n p. H Range 2 - 9 n fish hypersensitive to bacterial parasites at p. H 5. 5, usually die if p. H drops below 4. 5

Aquatic Habitats n Specialized Aquatic Environments n Salt lakes – no outlets Water evaporates,

Aquatic Habitats n Specialized Aquatic Environments n Salt lakes – no outlets Water evaporates, concentrates salt n Halophilic organisms n n Iron springs n n Contain large quantities of ferrous ions Sulfur Springs n Support both photosynthetic and non-photosynthetic sulfur bacteria

Aquatic Habitats n Lake Zones n Littoral Zone Extending from shore to the limit

Aquatic Habitats n Lake Zones n Littoral Zone Extending from shore to the limit of occupancy of rooted plants n Part of the photic zone n n Limnetic Zone n n Region of open water bounded by zone of emergent (rooted) vegetation Benthic Zone n Sediment (regardless of depth)

Aquatic Habitats n Freshwater n Composition of the water reflects its source Stagnant ponds

Aquatic Habitats n Freshwater n Composition of the water reflects its source Stagnant ponds to free flowing rivers and lakes n Ground water n n n Surface water n n n Normally relatively free of nutrients and toxins Affected by surface runoff of materials Organics, fertilizers, herbicides, pesticides, etc. Inshore Marine n Affected by freshwater runoff and pollutants

Aquatic Habitats n Marine Environment n Factors affecting presence of miroorganisms Same Factors as

Aquatic Habitats n Marine Environment n Factors affecting presence of miroorganisms Same Factors as Fresh Water plus n Barometric pressure (hydrostatic pressure) n n n 1 atm / 33 feet of seawater ocean 35, 750 feet (11, 000 meters) deep, hydrostatic pressure 1, 083 atm Organisms are barophilic (barophiles) Salinity n n Marine averages 3. 5% (fresh averages ~0. 5%) Organisms are halophilic (halophiles) or halotolerant

Aquatic Habitats n Microbial Flora n Dictated by Available Nutrients n Bulk of Microbial

Aquatic Habitats n Microbial Flora n Dictated by Available Nutrients n Bulk of Microbial Mass n n Aerobic Chemoheterotrophic Bacteria n n n algae, cyanobacteria & protozoa degrade organic materials Cytophaga, Caulobacter Chemoautotrophic Bacteria n obtain energy from aerobic oxidation of reduced inorganic compounds

Aquatic Habitats n Sulfur Oxidizers - Thiobacillus n n Nitrifiers n n n oxidize

Aquatic Habitats n Sulfur Oxidizers - Thiobacillus n n Nitrifiers n n n oxidize H 2 S dissolved in water to inorganic sulfur or sulfate more important in marine environments oxidize ammonia - nitrite - nitrate Sediment n Methanogenic Bacteria n Foraminiferans & Radiolarians (oil and gas markers)

Aquatic Habitats n Marine Waters n Microbial Flora n Most bacteria are found n

Aquatic Habitats n Marine Waters n Microbial Flora n Most bacteria are found n n n In association with organic particles (often less than 0. 1 mm in size) near the surface In association with skin or gut of fish Deep ocean vents n Chemoautotrophic bacteria Some Vibrios are of major importance as fish pathogens n Some microbes cause human-like diseases in fish n n n Pasteuralla piscicida (like tularemia) Mycobacterium marinum (TB like disease)

Aquatic Habitats n Major Functions of Freshwater and Marine Bacteria n Decompose Organic Matter

Aquatic Habitats n Major Functions of Freshwater and Marine Bacteria n Decompose Organic Matter n n Transform Essential Minerals n n liberate mineral nutrients cycling them through forms other organisms can use Release Dissolved Organic Compounds n into the food web to support growth of other organisms

Aquatic Habitats n Determining Microbial Flora n Epifluorescence Counting Stain with acridine orange (stains

Aquatic Habitats n Determining Microbial Flora n Epifluorescence Counting Stain with acridine orange (stains DNA) n view slide under UV light n n n tedious and can be inaccurate, counts DNA from living and dead organisms Luciferin-luciferase Enzyme System Gives estimate of the number of viable organisms in a given volume of water n Based on carbon: ATP ratio (~250 for most microbes) n

Terrestrial Habitats n Characteristics of Soil n Composed of n n Pulverized rocks, decaying

Terrestrial Habitats n Characteristics of Soil n Composed of n n Pulverized rocks, decaying organic material, air & water Life Bacteria, fungi, algae, protozoa, worms, insects, and plants roots n May contain n n More than 4, 000 different species per gram of soil More than 2 tons of bacteria and fungi per acre Can be a rapidly and dramatically changing environment

Terrestrial Habitats n Soil Layers (Horizons) n Topsoil (A Horizon) Dark, nutrient-rich n Supports

Terrestrial Habitats n Soil Layers (Horizons) n Topsoil (A Horizon) Dark, nutrient-rich n Supports plant growth n Depth – few inches to several feet n n Subsoil (B Horizon) n n C Horizon n n Accumulation of clays, salts & various nutrients Partially weathered bedrock R Horizon n Unweathered bedrock

Terrestrial Habitats n Microorganisms in Soil n Composition affected by environmental conditions n Moisture

Terrestrial Habitats n Microorganisms in Soil n Composition affected by environmental conditions n Moisture n n n Finely textured soils (clay) tend to be waterlogged anaerobic Sandy soils (dry quickly) tend to be aerobic Acidity n n Suppresses bacterial growth Fungi thrive with less competition for nutrients

Terrestrial Habitats n Temperature n n n Mesophiles comprise the bulk of the soil

Terrestrial Habitats n Temperature n n n Mesophiles comprise the bulk of the soil bacteria, they grow best between 20 o. C and 50 o. C Thermophiles occur in compost piles where they generate heat Available Nutrients n The size of the microbial population in soil is limited by on the amount of organic matter available

Terrestrial Habitats n Soil Organisms n Prokaryotes Most numerous soil inhabitants n Most common

Terrestrial Habitats n Soil Organisms n Prokaryotes Most numerous soil inhabitants n Most common genera n n Nocardia, Arthrobacter, Streptomyces n Produce conidia (dessication resistant spore) n Produce geosmins (give soil musty odor) n Produce many medically useful antibiotics Gram (+) bacteria more abundant than Gram (-) bacteria

Terrestrial Habitats n Not all Soil Organisms are Beneficial n Human Bacterial Pathogens n

Terrestrial Habitats n Not all Soil Organisms are Beneficial n Human Bacterial Pathogens n n Clostridium and Norcardia Human Fungal Pathogens n Coccidioides, Histoplasma, and Blastomyces

Terrestrial Habitats n Fungi Make up bulk of soil biomass n Most are aerobic

Terrestrial Habitats n Fungi Make up bulk of soil biomass n Most are aerobic n n n Usually found in top 10 cm of soil Crucial in decomposing plant matter Some are free-living n Some occur in symbiotic relationship with plant roots n n n Mycorrhizae Algae n Live mostly on or near surface

Terrestrial Habitats n Algae n n n Dependent on sunlight and photosynthesis to provide

Terrestrial Habitats n Algae n n n Dependent on sunlight and photosynthesis to provide energy needs. Sensitive to environmental conditions of drought and low temperature Major nutrient source for n n Earthworms and nematodes Protozoa n n n Aerobic - generally found near the surface Found in moist soils at a density of ~104 to 105 organisms per gram of soil Predators of soil bacteria and algae

Terrestrial Habitats n Rhizosphere n n Zone of soil that adheres to plant roots

Terrestrial Habitats n Rhizosphere n n Zone of soil that adheres to plant roots Roots cells extract organic molecules n n Sugars, amino acids and vitamins Fosters growth of microorganisms Gram (-) more prevalent than surrounding soil n Certain grasses – enriched with Azospirillum species n

Biochemical Cycling & Energy Flow n Biochemical Cycles n n Cyclical paths elements take

Biochemical Cycling & Energy Flow n Biochemical Cycles n n Cyclical paths elements take as they flow through living (biotic) and non-living (abiotic) components of ecosystem Fixed and limited amount of elements available n Carbon and nitrogen particularly important n n n Stable gaseous forms CO 2 and N gas enter atmosphere Global impacts Elements continually cycle in ecosystem n Energy does not, must be continually added to fuel life

Biochemical Cycling n Elements - three general purposes n Biomass production n Incorporated into

Biochemical Cycling n Elements - three general purposes n Biomass production n Incorporated into cell material n n All organisms require nitrogen to produce amino acids Energy source Reduced form of element is used to generate energy – ATP n Energy yielding reactions oxidize the energy source n n n Chemoorganotrophs use reduced carbon compounds – sugar, lipids and amino acids Chemolithotrophs use reduced inorganic molecules – H 2 S, ammonia (NH 3) and hydrogen gas (H 4)

Biochemical Cycling n Terminal electron acceptor n Electrons from energy source transferred to an

Biochemical Cycling n Terminal electron acceptor n Electrons from energy source transferred to an oxidized form of element during respiration n Aerobic conditions n O 2 is terminal electron acceptor Anaerobic conditions some prokaryotes use n Nitrate (NO 3), nitrite (NO 2), sulfate (SO 4)and CO 2 The following pages will review cycling processes for oxygen, carbon, nitrogen, phosphorus and sulfur

Oxygen Cycle n During photosynthesis cyanobacteria, algae and green plants produce oxygen from water.

Oxygen Cycle n During photosynthesis cyanobacteria, algae and green plants produce oxygen from water. The oxygen is utilized via respiration. n The level of oxygen in the atmosphere is maintained by chemical reactions in the upper atmosphere, aerobic respiration and photosynthesis

Carbon Cycle n Carbon enters producers during photosynthesis or chemosynthesis In turn enters consumers

Carbon Cycle n Carbon enters producers during photosynthesis or chemosynthesis In turn enters consumers via consumption of the producers. Carbon returned to the atmosphere in the form of CO 2 by respiration and the actions of decomposers consuming dead or decaying waste. n Oxygen has profound influence on cycle n n n Allows degradation of certain compounds Helps determine the types of carbon containing gases produced Aerobic decomposition Great deal of OC 2 formed through aerobic respiration (CH 2 O)n + (O 2)n CO 2 + H 2 O

Carbon Cycle n Low oxygen (wet soils, marshes, swamps, etc. ) n Degradation is

Carbon Cycle n Low oxygen (wet soils, marshes, swamps, etc. ) n Degradation is incomplete n Generate CO 2 and other gases n Some CO 2 used by methanogens (ex: Archaea) as terminal electron acceptor generating methane (CH 4) n 4 H 2 + CO 2 CH 4 + H 2 O n Methane entering atmosphere is oxidized by UV light and chemical ions to CO and CO 2

Nitrogen Cycle n Nitrogen (Fig. 30. 11; pg. 775) n n Most important constituent

Nitrogen Cycle n Nitrogen (Fig. 30. 11; pg. 775) n n Most important constituent of proteins and nucleic acids Consumers obtain required nitrogen from ingested plants and animals and use it to build biomass n Prokaryotes – diverse in use of nitrogen compounds n n n Some use oxidized compounds like nitrate and nitrite Some use reduced nitrogen compounds like ammonium All of these metabolic activities represent steps in the N cycle

Nitrogen Cycle n Nitrogen Fixation n Nitrogen gas reduced to form ammonium n n

Nitrogen Cycle n Nitrogen Fixation n Nitrogen gas reduced to form ammonium n n n Ammonium can be incorporated into cellular material Atmosphere 79% N 2 n Relatively few organisms use atmospheric (gaseous) nitrogen – rely on prokaryotes to convert atmospheric nitrogen into a useable form Nitrogenase n Enzyme complex that mediates nitrogen fixation and is readily inactivated by oxygen n Nitrogen fixing aerobes must have a mechanism for protection

Nitrogen Cycle n Nitrogen fixing prokaryotes (diazotrophs) n Free living n n Symbiotic -

Nitrogen Cycle n Nitrogen fixing prokaryotes (diazotrophs) n Free living n n Symbiotic - significant in benefiting plant growth n n n Azotobacter - chief suppliers of fixed nitrogen in grasslands & similar ecosystems Cyanobacteria - most significant nitrogen fixer in aquatic environments Clostridium spp. - dominant free-living anaerobes in soils Found in association with all leguminous plants including alfalfa, clover, peas, beans, peanuts and vetch Rhizobium Synthetic nitrogen compounds

Nitrogen Cycle n Ammonification n The decomposition of organic nitrogen into ammonia n n

Nitrogen Cycle n Ammonification n The decomposition of organic nitrogen into ammonia n n n Occurs when extracellular proteolytic enzymes convert proteins into amino acids. Other enzymes then decompose amino acids into ammonium (NH 4+) and sulfate ions. Ammonium ions in turn can be oxidized to nitrite (NO 2 -) and nitrate (NO 3 -) through Nitrification

Nitrogen Cycle n Nitrification n n Oxidation of ammonium to nitrite Nitrifiers - encompass

Nitrogen Cycle n Nitrification n n Oxidation of ammonium to nitrite Nitrifiers - encompass two groups of chemolithotrophic bacteria n n Ammonia oxidizers n Nitrosomonas - (NH 4+ to NO 2 -) (ammonium to nitrite) Nitrite oxidizers n Nitrobacter & Nitrospira (NO 2 - to NO 3 -) (nitrite to nitrate) Obligate aerobes – use molecular O 2 as final electron acceptor n Nitrification does not occur in waterlogged soils or anaerobic aquatic environments Important because it supplies plants with nitrates which is the most useable form of nitrogen for plant metabolism

Nitrogen Cycle n Denitification n n Process to convert nitrate to gaseous nitrogen Nitrate

Nitrogen Cycle n Denitification n n Process to convert nitrate to gaseous nitrogen Nitrate represents fully oxidized nitrogen n n Pseudomonas spp. can use nitrate as terminal electron acceptor n Anaerobic respiration Nitrate reduced to gaseous nitrogen compounds – nitrous oxide and molecular nitrogen Release to atmosphere represents a loss of nitrogen and contributes to global warming Benefit – waste water treatment processes to remove nitrate Anammox n n Brocadia anamoxidans oxidizes ammonium anaerobically Potential benefit in waste water treatment

Sulfur Cycle n Sulfur n n n Occurs in all living things Chiefly a

Sulfur Cycle n Sulfur n n n Occurs in all living things Chiefly a compound of amino acids methioine & cysteine Key steps of cycle rely on prokaryotes Some use reduced form of H 2 S, some elemental S n Others use sulfate n Most plants and microbes assimulate sulfur as sulfate (SO 42 -) n Is present in the soil (like nitrogen) chiefly as a part of proteins n

Sulfur Cycle n Hydrogen sulfide is toxic to lining things n n n Under

Sulfur Cycle n Hydrogen sulfide is toxic to lining things n n n Under aerobic conditions, H 2 S oxidizes spontaneously to sulfur and is then converted to sulfate (SO 42 -) (its most readily utilized form) by sulfur bacteria Under anaerobic conditions sulfate-reducing bacteria reduce sulfate to hydrogen sulfide Oxidation of hydrogen sulfide to sulfate carried out principally by nonphotosynthetic autotrophs, Thiobacillus, Thiothrix and Beggiatoa and less commonly by photosynthetic autotrophs (green and purple sulfur bacteria)

Sulfur Cycle n Sulfur Reduction n Reduction of sulfate to sulfide n n Carried

Sulfur Cycle n Sulfur Reduction n Reduction of sulfate to sulfide n n Carried out by anaerobic bacteria that are capable of utilizing sulfate as the final electron acceptor in their anaerobic respiration Include Desulfovibrio and Desulfomonas

Phosphorus Cycle n Involves movement of phosphorus between inorganic and organic forms n Microorganisms

Phosphorus Cycle n Involves movement of phosphorus between inorganic and organic forms n Microorganisms play three major roles in phosphorus transformations Mineralize organic phosphorus n Convert insoluble forms of inorganic phosphorus to soluble forms n Immobilize inorganic phosphorus n

Phosphorus Cycle n Overall Transformations of Phosphorus n Soil Organisms Break down organic phosphate

Phosphorus Cycle n Overall Transformations of Phosphorus n Soil Organisms Break down organic phosphate into to inorganic phosphates n Then convert inorganic phosphates to orthophosphate (PO 43 -) n n Orthophosphate is water soluble and readily used by most plants and microorganisms When plants & animals die decomposers convert organic phosphate back into inorganic phosphate Phosphorus is often the limiting nutrient in many environments