METODE TRANSPORTASI PENGERTIAN metode yang digunakan untuk mengatur
![METODE TRANSPORTASI METODE TRANSPORTASI](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-1.jpg)
![PENGERTIAN • metode yang digunakan untuk mengatur distribusi dari sumber- sumber yang menyediakan produk PENGERTIAN • metode yang digunakan untuk mengatur distribusi dari sumber- sumber yang menyediakan produk](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-2.jpg)
![METODE-METODE • North West Corner (NWC) • Least Cost (LC) • Vogels Approximation METODE-METODE • North West Corner (NWC) • Least Cost (LC) • Vogels Approximation](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-3.jpg)
![NORTH WEST CORNER • Metode ini adalah metode yang paling sederhana diantara metode untuk NORTH WEST CORNER • Metode ini adalah metode yang paling sederhana diantara metode untuk](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-4.jpg)
![NORTH WEST CORNER • 1. Memulai dari pojok barat laut alokasikan sebesar X 11 NORTH WEST CORNER • 1. Memulai dari pojok barat laut alokasikan sebesar X 11](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-5.jpg)
![CONTOH • Sebuah perusahaan ingin mendistribusikan barang dari masing-masing Gudang ke masing-masing pabrik dengan CONTOH • Sebuah perusahaan ingin mendistribusikan barang dari masing-masing Gudang ke masing-masing pabrik dengan](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-6.jpg)
![CONTOH • Dimulai dari kotak paling kiri atas yaitu Gudang A ke pabrik D. CONTOH • Dimulai dari kotak paling kiri atas yaitu Gudang A ke pabrik D.](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-7.jpg)
![CONTOH • Selanjutnya masih tersisa 100 permintaan untuk pabrik D, maka beralih ke Gudang CONTOH • Selanjutnya masih tersisa 100 permintaan untuk pabrik D, maka beralih ke Gudang](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-8.jpg)
![CONTOH • Lakukan pengisian sampai Gudang C ke pabrik F. • Biaya yang dikeluarkan CONTOH • Lakukan pengisian sampai Gudang C ke pabrik F. • Biaya yang dikeluarkan](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-9.jpg)
![LEAST COST • Algoritma metode ongkos terkecil (Least Cost Method) untuk mencapai solusi fisibel LEAST COST • Algoritma metode ongkos terkecil (Least Cost Method) untuk mencapai solusi fisibel](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-10.jpg)
![LEAST COST 3. Pada Cij terkecil dialokasikan sebanyak mungkin tanpa melanggar batasannya. Mengisi Xij LEAST COST 3. Pada Cij terkecil dialokasikan sebanyak mungkin tanpa melanggar batasannya. Mengisi Xij](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-11.jpg)
![CONTOH • Sebuah perusahaan ingin mendistribusikan barang dari masing-masing Gudang ke masing-masing pabrik dengan CONTOH • Sebuah perusahaan ingin mendistribusikan barang dari masing-masing Gudang ke masing-masing pabrik dengan](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-12.jpg)
![CONTOH • Pengisian dimuali dari biaya terkecil, dalam hal ini yaitu 2 yaitu Gudang CONTOH • Pengisian dimuali dari biaya terkecil, dalam hal ini yaitu 2 yaitu Gudang](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-13.jpg)
![CONTOH • Selanjutnya, di kotak yang belum terisi dicari biaya minimum lagi yaitu 3, CONTOH • Selanjutnya, di kotak yang belum terisi dicari biaya minimum lagi yaitu 3,](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-14.jpg)
![CONTOH • Dengan langkah yang sama, lakukan pengisian sampai semua kotak terisi. • Biaya CONTOH • Dengan langkah yang sama, lakukan pengisian sampai semua kotak terisi. • Biaya](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-15.jpg)
![VOGEL’S APPROXIMATION • Algoritma metode VAM (Vogel’s Approximation Method) untuk mencapai solusi fisibel awal VOGEL’S APPROXIMATION • Algoritma metode VAM (Vogel’s Approximation Method) untuk mencapai solusi fisibel awal](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-16.jpg)
![VOGEL’S APPROXIMATION 4. Menghilangkan baris atau kolom yang sudah diisi sepenuhnya karena tidak mungkin VOGEL’S APPROXIMATION 4. Menghilangkan baris atau kolom yang sudah diisi sepenuhnya karena tidak mungkin](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-17.jpg)
![CONTOH • Sebuah perusahaan ingin mendistribusikan barang dari masing-masing Gudang ke masing-masing pabrik dengan CONTOH • Sebuah perusahaan ingin mendistribusikan barang dari masing-masing Gudang ke masing-masing pabrik dengan](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-18.jpg)
![CONTOH • Selisihkan 2 biaya terkecil baris dan kolom. Baris 1 (5 dan 6) CONTOH • Selisihkan 2 biaya terkecil baris dan kolom. Baris 1 (5 dan 6)](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-19.jpg)
![CONTOH • Lakukan penselisihan lagi untuk baris dan kolom dengan tidak mengikutsertakan kotak yang CONTOH • Lakukan penselisihan lagi untuk baris dan kolom dengan tidak mengikutsertakan kotak yang](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-20.jpg)
![CONTOH • • Lakukan hal yang sama sampai tersisa 2 kotak Dari 2 kotak CONTOH • • Lakukan hal yang sama sampai tersisa 2 kotak Dari 2 kotak](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-21.jpg)
![UJI OPTIMALITAS • Langkah selanjutnya adalah melakukan uji optimalitas. Langkah ini merupakan langkah penyelesaian UJI OPTIMALITAS • Langkah selanjutnya adalah melakukan uji optimalitas. Langkah ini merupakan langkah penyelesaian](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-22.jpg)
![STEPPING STONE • Metode Stepping Stone digunakan sebagai pengecekan apakah perhitungan yang telah kita STEPPING STONE • Metode Stepping Stone digunakan sebagai pengecekan apakah perhitungan yang telah kita](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-23.jpg)
![LANGKAH-LANGKAH 1. Lakukan pengecekan terhadap sel-sel yang masih kosong, 2. lakukan penarikan garis, garis LANGKAH-LANGKAH 1. Lakukan pengecekan terhadap sel-sel yang masih kosong, 2. lakukan penarikan garis, garis](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-24.jpg)
![CONTOH • Lihat kotak non basis (kosong) Gudang A ke pabrik E. • Lakukan CONTOH • Lihat kotak non basis (kosong) Gudang A ke pabrik E. • Lakukan](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-25.jpg)
![CONTOH • Lihat kotak non basis (kosong) Gudang A ke pabrik F. • Lakukan CONTOH • Lihat kotak non basis (kosong) Gudang A ke pabrik F. • Lakukan](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-26.jpg)
![CONTOH • Lihat kotak non basis (kosong) Gudang C ke pabrik E. • Lakukan CONTOH • Lihat kotak non basis (kosong) Gudang C ke pabrik E. • Lakukan](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-27.jpg)
![CONTOH • Ambil kotak dengan nilai minus ( dalam hal ini 100 dan 200), CONTOH • Ambil kotak dengan nilai minus ( dalam hal ini 100 dan 200),](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-28.jpg)
![MODIFIED DISTRIBUTION (MODI) • Metode ini dalam merubah alokasi produk untuk mendapatkan alokasi produksi MODIFIED DISTRIBUTION (MODI) • Metode ini dalam merubah alokasi produk untuk mendapatkan alokasi produksi](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-29.jpg)
![ALGORITMA MODI 1. Menentukan tabel awal yang fisibel dengan menggunakan metode NW – Corner ALGORITMA MODI 1. Menentukan tabel awal yang fisibel dengan menggunakan metode NW – Corner](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-30.jpg)
![ALGORITMA MODI 5. Menentukan sel yang akan masuk basis dengan memilih nilai sel bukan ALGORITMA MODI 5. Menentukan sel yang akan masuk basis dengan memilih nilai sel bukan](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-31.jpg)
![CONTOH • Dari metode NWC disamping, hitunglah biaya optimal menggunakan Modified Distribution! Dari/ ke CONTOH • Dari metode NWC disamping, hitunglah biaya optimal menggunakan Modified Distribution! Dari/ ke](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-32.jpg)
![CONTOH • Cari nilai setiap baris dan kolom dari kotak basis dengan nilai baris CONTOH • Cari nilai setiap baris dan kolom dari kotak basis dengan nilai baris](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-33.jpg)
![CONTOH • Menghitung nilai non basis dengan rumus Cij – Ri – Kj o CONTOH • Menghitung nilai non basis dengan rumus Cij – Ri – Kj o](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-34.jpg)
![CONTOH • Lakukan perubahan seperti stepping stone pada CD dengan nilai peubah adalah 100 CONTOH • Lakukan perubahan seperti stepping stone pada CD dengan nilai peubah adalah 100](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-35.jpg)
![CONTOH • Hasil perubahan seperti tabel disamping. • Lakukan lagi mencari nilai basis dan CONTOH • Hasil perubahan seperti tabel disamping. • Lakukan lagi mencari nilai basis dan](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-36.jpg)
- Slides: 36
![METODE TRANSPORTASI METODE TRANSPORTASI](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-1.jpg)
METODE TRANSPORTASI
![PENGERTIAN metode yang digunakan untuk mengatur distribusi dari sumber sumber yang menyediakan produk PENGERTIAN • metode yang digunakan untuk mengatur distribusi dari sumber- sumber yang menyediakan produk](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-2.jpg)
PENGERTIAN • metode yang digunakan untuk mengatur distribusi dari sumber- sumber yang menyediakan produk yang sama ke tempat-tempat yang membutuhkan secara optimal. Alokasi produk ini harus diatur sedemikian rupa, karena terdapat perbedaan biaya-biaya alokasi dari satu sumber ke suatu tempat tujuan
![METODEMETODE North West Corner NWC Least Cost LC Vogels Approximation METODE-METODE • North West Corner (NWC) • Least Cost (LC) • Vogels Approximation](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-3.jpg)
METODE-METODE • North West Corner (NWC) • Least Cost (LC) • Vogels Approximation
![NORTH WEST CORNER Metode ini adalah metode yang paling sederhana diantara metode untuk NORTH WEST CORNER • Metode ini adalah metode yang paling sederhana diantara metode untuk](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-4.jpg)
NORTH WEST CORNER • Metode ini adalah metode yang paling sederhana diantara metode untuk mencari solusi awal, karena tidak mempertimbangkan biaya transportasi (Siagian; 1987; 159). Algoritma metode pojok kiri atas pojok kanan bawah (North West Corner Method) untuk mencapai solusi fisibel awal dari masalah transportasi adalah sebagai berikut :
![NORTH WEST CORNER 1 Memulai dari pojok barat laut alokasikan sebesar X 11 NORTH WEST CORNER • 1. Memulai dari pojok barat laut alokasikan sebesar X 11](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-5.jpg)
NORTH WEST CORNER • 1. Memulai dari pojok barat laut alokasikan sebesar X 11 = min(a 1, b 1). o Bila a 1 > b 1, maka X 11 = b 1. Teruskan ke sel (1, 2) yaitu gerakan mendatar dimana X 12 = min(a 1 -b 1, b 2). o Bila a 1 < b 1, maka X 11 = a 1. Teruskan ke sel (2, 1) yaitu gerakan tegak dimana X 21 = min (b 1 -a 1, a 2). o Bila a 1 = b 1, maka buatlah X 11 = a 1 = b 1 dan gerakan teruskan ke X 12 (gerakan miring). • 2. Meneruskan langkah ini, sehingga mendekati pojok barat laut hingga akhirnya sampai semua penawaran telah dihabiskan dan keperluan permintaan telah terpenuhi.
![CONTOH Sebuah perusahaan ingin mendistribusikan barang dari masingmasing Gudang ke masingmasing pabrik dengan CONTOH • Sebuah perusahaan ingin mendistribusikan barang dari masing-masing Gudang ke masing-masing pabrik dengan](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-6.jpg)
CONTOH • Sebuah perusahaan ingin mendistribusikan barang dari masing-masing Gudang ke masing-masing pabrik dengan biaya tertera pada tabel seperti disamping. Dan Setiap Gudang mempunyai maksimal supply, serta setiap pabrik mempunyai maksimal permintaan. Carilah biaya yang dikeluarkan perusahaan dengan NWC! Dari/ ke GUDANG A GUDANG B PABRIK D PABRIK E PABRIK F SUPPLY GUDANG C PERMINTAAN 500 5 12 4 800 13 2 9 700 6 11 3 400 700 900 2000
![CONTOH Dimulai dari kotak paling kiri atas yaitu Gudang A ke pabrik D CONTOH • Dimulai dari kotak paling kiri atas yaitu Gudang A ke pabrik D.](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-7.jpg)
CONTOH • Dimulai dari kotak paling kiri atas yaitu Gudang A ke pabrik D. Gudang A mempunyai supply maksimal sebanyak 400 dna Gudang D mempunyai permintaan sebanyak 500. Maka kita ambil yang terkecil yaitu 400. Dengan begitu, Gudang A tidak bisa mensupply ke pabrik manapun Dari/ ke GUDANG A GUDANG B PABRIK D PABRIK E PABRIK F SUPPLY 400 GUDANG C PERMINTAAN 500 5 12 4 X 800 13 2 9 X 700 6 11 3 400 700 900 2000
![CONTOH Selanjutnya masih tersisa 100 permintaan untuk pabrik D maka beralih ke Gudang CONTOH • Selanjutnya masih tersisa 100 permintaan untuk pabrik D, maka beralih ke Gudang](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-8.jpg)
CONTOH • Selanjutnya masih tersisa 100 permintaan untuk pabrik D, maka beralih ke Gudang B mempunyai maksimal supply 700, maka kita isi yang minimum yaitu 100. dengan begitu pabrik D sudah terpenuhi permintaannya. Lakukan terus sampai ke Gudang C pabrik F Dari/ ke GUDANG A GUDANG B PABRIK D PABRIK E PABRIK F SUPPLY 400 100 GUDANG C X PERMINTAAN 500 5 12 4 X 800 13 2 9 X 700 6 11 3 400 700 900 2000
![CONTOH Lakukan pengisian sampai Gudang C ke pabrik F Biaya yang dikeluarkan CONTOH • Lakukan pengisian sampai Gudang C ke pabrik F. • Biaya yang dikeluarkan](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-9.jpg)
CONTOH • Lakukan pengisian sampai Gudang C ke pabrik F. • Biaya yang dikeluarkan perusahaan adalah : • (400 x 5)+(100 x 12)+(600 x 2)+(200 x 9)+(700 x 3) = 8300 Dari/ ke GUDANG A GUDANG B PABRIK D PABRIK E PABRIK F SUPPLY 400 100 GUDANG C X PERMINTAAN 500 5 12 4 X 600 200 800 13 2 9 X X 700 6 11 3 400 700 900 2000
![LEAST COST Algoritma metode ongkos terkecil Least Cost Method untuk mencapai solusi fisibel LEAST COST • Algoritma metode ongkos terkecil (Least Cost Method) untuk mencapai solusi fisibel](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-10.jpg)
LEAST COST • Algoritma metode ongkos terkecil (Least Cost Method) untuk mencapai solusi fisibel awal dari masalah transportasi adalah sebagai berikut : 1. Menyusun tabel awal yang berisi tabel biaya transportasi. 2. Mencari sel yang memiliki biaya terkecil Cij pada tabel awal.
![LEAST COST 3 Pada Cij terkecil dialokasikan sebanyak mungkin tanpa melanggar batasannya Mengisi Xij LEAST COST 3. Pada Cij terkecil dialokasikan sebanyak mungkin tanpa melanggar batasannya. Mengisi Xij](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-11.jpg)
LEAST COST 3. Pada Cij terkecil dialokasikan sebanyak mungkin tanpa melanggar batasannya. Mengisi Xij = min(ai, bj). o Jika bj < ai maka Xij = bj kolom ke j tidak diperhitungkan lagi dan ai berkurang sebesar bj. o Jika bj > ai maka Xij = ai baris ke i tidak diperhitungkan lagi dan bj berkurang sebesar ai. o Jika bj = ai maka Xij= ai = bj baris ke i dan kolom ke j tidak diperhitungkan lagi. 4. Mencari sel yang memiliki Cij terkecil, dilanjutkan dengan cara yang sama sampai semua persediaan habis dan permintaan terpenuhi.
![CONTOH Sebuah perusahaan ingin mendistribusikan barang dari masingmasing Gudang ke masingmasing pabrik dengan CONTOH • Sebuah perusahaan ingin mendistribusikan barang dari masing-masing Gudang ke masing-masing pabrik dengan](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-12.jpg)
CONTOH • Sebuah perusahaan ingin mendistribusikan barang dari masing-masing Gudang ke masing-masing pabrik dengan biaya tertera pada tabel seperti disamping. Dan Setiap Gudang mempunyai maksimal supply, serta setiap pabrik mempunyai maksimal permintaan. Carilah biaya yang dikeluarkan perusahaan dengan Least Cost! Dari/ ke GUDANG A GUDANG B PABRIK D PABRIK E PABRIK F SUPPLY GUDANG C PERMINTAAN 500 5 12 4 800 13 2 9 700 6 11 3 400 700 900 2000
![CONTOH Pengisian dimuali dari biaya terkecil dalam hal ini yaitu 2 yaitu Gudang CONTOH • Pengisian dimuali dari biaya terkecil, dalam hal ini yaitu 2 yaitu Gudang](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-13.jpg)
CONTOH • Pengisian dimuali dari biaya terkecil, dalam hal ini yaitu 2 yaitu Gudang B ke Pabrik E. Gudang B mempunyai supply maksimum 700 dan pabrik E mempunyai maksimal permintaan 800, maka kita isi yang minimum yaitu 700. Dengan begitu, Gudang B sudah tidak bisa mensupply barang lagi Dari/ ke GUDANG A GUDANG B PABRIK D PABRIK E PABRIK F SUPPLY X GUDANG C PERMINTAAN 500 5 12 4 700 800 13 2 9 X 700 6 11 3 400 700 900 2000
![CONTOH Selanjutnya di kotak yang belum terisi dicari biaya minimum lagi yaitu 3 CONTOH • Selanjutnya, di kotak yang belum terisi dicari biaya minimum lagi yaitu 3,](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-14.jpg)
CONTOH • Selanjutnya, di kotak yang belum terisi dicari biaya minimum lagi yaitu 3, Gudang C ke Pabrik F. Gudang C mempunyai supply maksimum 900 dan pabrik F mempunyai maksimal permintaan 700, maka kita isi yang minimum yaitu 700. Dengan begitu, pabrik F sudah terpenuhi permintaanya Dari/ ke GUDANG A GUDANG B PABRIK D PABRIK E PABRIK F SUPPLY X GUDANG C PERMINTAAN 500 5 12 4 700 800 13 2 9 X X 700 6 11 3 400 700 900 2000
![CONTOH Dengan langkah yang sama lakukan pengisian sampai semua kotak terisi Biaya CONTOH • Dengan langkah yang sama, lakukan pengisian sampai semua kotak terisi. • Biaya](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-15.jpg)
CONTOH • Dengan langkah yang sama, lakukan pengisian sampai semua kotak terisi. • Biaya pada least cost adalah: • (300 x 5)+(100 x 13)+(700 x 2)+(200 x 4)+(700 x 3)= 7100 Dari/ ke GUDANG A GUDANG B PABRIK D PABRIK E PABRIK F SUPPLY 300 X GUDANG C 200 PERMINTAAN 500 5 12 4 100 700 X 800 13 2 9 X X 700 6 11 3 400 700 900 2000
![VOGELS APPROXIMATION Algoritma metode VAM Vogels Approximation Method untuk mencapai solusi fisibel awal VOGEL’S APPROXIMATION • Algoritma metode VAM (Vogel’s Approximation Method) untuk mencapai solusi fisibel awal](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-16.jpg)
VOGEL’S APPROXIMATION • Algoritma metode VAM (Vogel’s Approximation Method) untuk mencapai solusi fisibel awal dari masalah transportasi adalah sebagai berikut : 1. Menyusun kebutuhan, kapasitas masing-masing sumber dan biaya pengangkutan kedalam matriks. 2. Mencari selisih biaya terkecil dengan biaya terkecil berikutnya untuk setiap kolom maupun baris. 3. Memilih selisih biaya terbesar dan mengalokasikan produk sebanyak mungkin ke sel yang memiliki biaya terkecil.
![VOGELS APPROXIMATION 4 Menghilangkan baris atau kolom yang sudah diisi sepenuhnya karena tidak mungkin VOGEL’S APPROXIMATION 4. Menghilangkan baris atau kolom yang sudah diisi sepenuhnya karena tidak mungkin](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-17.jpg)
VOGEL’S APPROXIMATION 4. Menghilangkan baris atau kolom yang sudah diisi sepenuhnya karena tidak mungkin diisi lagi. 5. Menentukan kembali perbedaan (selisih) biaya pada langkah 2 untuk kolom dan baris yang belum terisi. Ulangi langkah 3 sampai dengan langkah 5, sampai semua kolom dan baris teralokasi. 6. Setelah terisi semua, kemudian menghitung biaya transportasi secara keseluruhan. 7. Melakukan Uji Optimalitas
![CONTOH Sebuah perusahaan ingin mendistribusikan barang dari masingmasing Gudang ke masingmasing pabrik dengan CONTOH • Sebuah perusahaan ingin mendistribusikan barang dari masing-masing Gudang ke masing-masing pabrik dengan](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-18.jpg)
CONTOH • Sebuah perusahaan ingin mendistribusikan barang dari masing-masing Gudang ke masing-masing pabrik dengan biaya tertera pada tabel seperti disamping. Dan Setiap Gudang mempunyai maksimal supply, serta setiap pabrik mempunyai maksimal permintaan. Carilah biaya yang dikeluarkan perusahaan dengan VAM! Dari/ ke GUDANG A GUDANG B PABRIK D PABRIK E PABRIK F SUPPLY GUDANG C PERMINTAAN 500 5 12 4 800 13 2 9 700 6 11 3 400 700 900 2000
![CONTOH Selisihkan 2 biaya terkecil baris dan kolom Baris 1 5 dan 6 CONTOH • Selisihkan 2 biaya terkecil baris dan kolom. Baris 1 (5 dan 6)](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-19.jpg)
CONTOH • Selisihkan 2 biaya terkecil baris dan kolom. Baris 1 (5 dan 6) selisihnya 1. dan begitu untuk baris dan kolom lain • Ambil nilai selisih terbesar. • Selisih terbesar yaitu 9 ada di baris Gudang B. • • Cari biaya terkecil di Gudang B yaitu 2 Lakukan pengisian pada Gudang B ke Pabrik B Dari/ ke GUDANG A GUDANG B PABRIK A X 5 12 4 PABRIK B 700 PABRIK C 13 2 9 SUPPLY 6 SELISIH 400 1 700 9 900 1 X 11 3 GUDANG C PERMINTAAN 500 800 700 2000 SELISIH 1 7 3
![CONTOH Lakukan penselisihan lagi untuk baris dan kolom dengan tidak mengikutsertakan kotak yang CONTOH • Lakukan penselisihan lagi untuk baris dan kolom dengan tidak mengikutsertakan kotak yang](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-20.jpg)
CONTOH • Lakukan penselisihan lagi untuk baris dan kolom dengan tidak mengikutsertakan kotak yang sudah terisi • Ambil selisih terbesar yaitu 4 • Pada kolom pabrik B, ambil biaya terkecil dari kotak kosong yaitu 9. • Isi kotak pada Gudang C ke pabrik B Dari/ ke PABRIK A PABRIK B 5 GUDANG A GUDANG B X 13 X 12 PABRIK C 700 4 SUPPLY 6 2 SELISIH X 11 400 1, 1 700 9, X 3 9 GUDANG C 100 900 1, 1 PERMINTAAN 500 800 700 2000 SELISIH 1, 1 7, 4 3, 3
![CONTOH Lakukan hal yang sama sampai tersisa 2 kotak Dari 2 kotak CONTOH • • Lakukan hal yang sama sampai tersisa 2 kotak Dari 2 kotak](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-21.jpg)
CONTOH • • Lakukan hal yang sama sampai tersisa 2 kotak Dari 2 kotak tersisa, ambil biaya terkecil dan isi kotak tersebut. Biaya untuk Vogel’s Approximation adalah (400 x 5)+(700 x 2)+(1 00 x 4)+(100 x 9)+(700 x 3)= 6800 Dari/ ke PABRIK A PABRIK B 5 GUDANG A GUDANG B 400 X 13 X 12 PABRIK C 700 4 SUPPLY 6 X 2 SELISIH X 11 400 1, 1, 1 700 9, X, X 3 9 GUDANG C 100 700 900 1, 1, 1 PERMINTAAN 500 800 700 2000 SELISIH 1, 1, 1 7, 4, X 3, 3, 3
![UJI OPTIMALITAS Langkah selanjutnya adalah melakukan uji optimalitas Langkah ini merupakan langkah penyelesaian UJI OPTIMALITAS • Langkah selanjutnya adalah melakukan uji optimalitas. Langkah ini merupakan langkah penyelesaian](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-22.jpg)
UJI OPTIMALITAS • Langkah selanjutnya adalah melakukan uji optimalitas. Langkah ini merupakan langkah penyelesaian model untuk mendapatkan solusi minimal. Pada penelitian ini pengujian optimalitas digunakan dengan menggunakan metode batu loncatan (Stepping Stone Method) dan MODI (Modified Distribution).
![STEPPING STONE Metode Stepping Stone digunakan sebagai pengecekan apakah perhitungan yang telah kita STEPPING STONE • Metode Stepping Stone digunakan sebagai pengecekan apakah perhitungan yang telah kita](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-23.jpg)
STEPPING STONE • Metode Stepping Stone digunakan sebagai pengecekan apakah perhitungan yang telah kita hitung menggunakan solusi transportasi awal sudah benar optimal atau belum
![LANGKAHLANGKAH 1 Lakukan pengecekan terhadap selsel yang masih kosong 2 lakukan penarikan garis garis LANGKAH-LANGKAH 1. Lakukan pengecekan terhadap sel-sel yang masih kosong, 2. lakukan penarikan garis, garis](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-24.jpg)
LANGKAH-LANGKAH 1. Lakukan pengecekan terhadap sel-sel yang masih kosong, 2. lakukan penarikan garis, garis bergerak (searah jarum jam/berlawanan) secara lurus ke arah sel yang telah terisi dengan alokasi, tidak boleh diagonal 3. Hanya ada satu jalur tertutup untuk setiap kotak kosong. 4. Jalur harus mengikuti kotak terisi. 5. Baik kotak terisi maupun kotak kosong dapat dilewati dalam penyusunan jalur tertutup. 6. Suatu jalur dapat melintasi dirinya. 7. Sebuah penambahan dan pengurangan yang sama besar harus kelihatan pada setiap baris dan kolom pada jalur itu. 8. Lakukan trial and error
![CONTOH Lihat kotak non basis kosong Gudang A ke pabrik E Lakukan CONTOH • Lihat kotak non basis (kosong) Gudang A ke pabrik E. • Lakukan](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-25.jpg)
CONTOH • Lihat kotak non basis (kosong) Gudang A ke pabrik E. • Lakukan perjalanan ke kotak yang terisi di (boleh samping atau bawah). • Lewati jalur hanya kotak yang terisi sampai jalur menutup • Setiap kotak isi + dan minus secara bergantian dimulai dari kotak kosong dengan nilai + • 13 -2+12 -5 = +18 • Karena positif maka kotak tersebut sudah optimal. Lakukan pengecekan kotak lain Dari/ ke GUDANG A GUDANG B PABRIK D PABRIK E PABRIK F SUPPLY 400 100 GUDANG C X PERMINTAAN 500 5 12 4 X 600 200 800 13 2 9 X X 700 6 11 3 400 700 900 2000
![CONTOH Lihat kotak non basis kosong Gudang A ke pabrik F Lakukan CONTOH • Lihat kotak non basis (kosong) Gudang A ke pabrik F. • Lakukan](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-26.jpg)
CONTOH • Lihat kotak non basis (kosong) Gudang A ke pabrik F. • Lakukan perjalan seperti sebelumya • Ingat, perjalanan tidak boleh diagonal, harus vertical atau horizontal • Setiap kotak isi + dan minus secara bergantian dimulai dari kotak kosong dengan nilai + • 6 -3+9 -2+12 -5 = +17 • Karena positif maka kotak tersebut sudah optimal. Lakukan pengecekan kotak lain Dari/ ke GUDANG A GUDANG B PABRIK D PABRIK E PABRIK F SUPPLY 400 100 GUDANG C X PERMINTAAN 500 5 12 4 X 600 200 800 13 2 9 X X 700 6 11 3 400 700 900 2000
![CONTOH Lihat kotak non basis kosong Gudang C ke pabrik E Lakukan CONTOH • Lihat kotak non basis (kosong) Gudang C ke pabrik E. • Lakukan](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-27.jpg)
CONTOH • Lihat kotak non basis (kosong) Gudang C ke pabrik E. • Lakukan perjalan seperti sebelumya • 2 -9+4 -12 = -19 • Karena negative, maka kotak tersebut dapat dilakukan perubahan Lakukan pengecekan kotak lain Dari/ ke GUDANG A GUDANG B PABRIK D PABRIK E PABRIK F SUPPLY 400 100 GUDANG C X PERMINTAAN 500 5 12 4 X 600 200 800 13 2 9 X X 700 6 11 3 400 700 900 2000
![CONTOH Ambil kotak dengan nilai minus dalam hal ini 100 dan 200 CONTOH • Ambil kotak dengan nilai minus ( dalam hal ini 100 dan 200),](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-28.jpg)
CONTOH • Ambil kotak dengan nilai minus ( dalam hal ini 100 dan 200), ambil yang terkecil untuk angka peubah yaitu 100. maka kotak CD + 100, BD 100, BE+100, CE-100. • Sehingga menjadi seperti disamping • Lakukan trial and error sampai tidak ada nilai negatif Dari/ ke GUDANG A GUDANG B PABRIK D PABRIK E PABRIK F SUPPLY 400 x GUDANG C 100 PERMINTAAN 500 5 12 4 X 700 100 800 13 2 9 X X 700 6 11 3 400 700 900 2000
![MODIFIED DISTRIBUTION MODI Metode ini dalam merubah alokasi produk untuk mendapatkan alokasi produksi MODIFIED DISTRIBUTION (MODI) • Metode ini dalam merubah alokasi produk untuk mendapatkan alokasi produksi](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-29.jpg)
MODIFIED DISTRIBUTION (MODI) • Metode ini dalam merubah alokasi produk untuk mendapatkan alokasi produksi yang optimal menggunakan suatu indeks perbaikan yang berdasarkan pada nilai baris dan nilai kolom. Cara untuk penentuan nilai baris dan nilai kolom menggunakan persamaan: • Ri + Kj = Cij, dimana : • Ri = Baris ke-i • Kj= Kolom ke j • Cij = biaya pengangkutan 1 unit barang dari sumber I ke tujuan j • Untuk metode MODI ada syarat yang harus dipenuhi, yaitu banyaknya kotak terisi harus sama dengan banyaknya baris ditambah banyaknya kolom dikurang satu.
![ALGORITMA MODI 1 Menentukan tabel awal yang fisibel dengan menggunakan metode NW Corner ALGORITMA MODI 1. Menentukan tabel awal yang fisibel dengan menggunakan metode NW – Corner](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-30.jpg)
ALGORITMA MODI 1. Menentukan tabel awal yang fisibel dengan menggunakan metode NW – Corner atau metode ongkos terkecil. 2. Menambahkan variabel Ri dan Kj pada setiap baris dan kolom. 3. Mencari nilai Ri maupun Kj untuk setiap sel basis dengan menggunakan rumus : Ri + Kj = Cij dengan memisahkan salah satu nilai Ri atau Kj sama dengan nol. 4. Menghitung semua nilai sel bukan basis dengan menggunakan rumus Cij – Ri – Ki.
![ALGORITMA MODI 5 Menentukan sel yang akan masuk basis dengan memilih nilai sel bukan ALGORITMA MODI 5. Menentukan sel yang akan masuk basis dengan memilih nilai sel bukan](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-31.jpg)
ALGORITMA MODI 5. Menentukan sel yang akan masuk basis dengan memilih nilai sel bukan basis yang memiliki nilai negatif terbesar. Kemudian membuat closed path untuk menentukan sel yang akan keluar dengan memilih jumlah unit terkecil dari sel yang bertanda negatif. 6. Tabel optimum tercapai apabila sel bukan basis semuanya memiliki nilai = 0. 7. Jika tabel belum optimum, kembali ke langkah 2 sehingga ditemukan tabel optimum.
![CONTOH Dari metode NWC disamping hitunglah biaya optimal menggunakan Modified Distribution Dari ke CONTOH • Dari metode NWC disamping, hitunglah biaya optimal menggunakan Modified Distribution! Dari/ ke](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-32.jpg)
CONTOH • Dari metode NWC disamping, hitunglah biaya optimal menggunakan Modified Distribution! Dari/ ke GUDANG A GUDANG B PABRIK D PABRIK E PABRIK F SUPPLY 400 100 GUDANG C X PERMINTAAN 500 5 12 4 X 600 200 800 13 2 9 X X 700 6 11 3 400 700 900 2000
![CONTOH Cari nilai setiap baris dan kolom dari kotak basis dengan nilai baris CONTOH • Cari nilai setiap baris dan kolom dari kotak basis dengan nilai baris](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-33.jpg)
CONTOH • Cari nilai setiap baris dan kolom dari kotak basis dengan nilai baris pertama = 0 • Ri + Kj = Cij, nilai baris pertama (RA) = 0 o RA + KD = CAD => 0 + KD = 5 => KD = 5 o RB + KD = CBD => RB + 5 = 12 => RB = 7 o RB + KE = CBE => 7 + KE = 2 => KE = -5 o RC + KE = CCE => RC + (-5) = 9 => RC = 14 o RC + KF = CCF => 14 + KF = 3 => KF = -11
![CONTOH Menghitung nilai non basis dengan rumus Cij Ri Kj o CONTOH • Menghitung nilai non basis dengan rumus Cij – Ri – Kj o](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-34.jpg)
CONTOH • Menghitung nilai non basis dengan rumus Cij – Ri – Kj o CAE – RA – KE => 13 – 0 – (-5) = 18 o CAF – RA – KF => 6 – 0 – (-11) = 17 o CBF – RB – KF => 11 – 7 – (-11) = 15 o CCD – RC – KD => 4 – 14 – 5 = -15 • Titik perubahan ada pada nilai minus terbesar yaitu -15 (kotak CD), lakukan perubahan pada kotak CD • Jika semua nilai positif, maka tidak dilakukan perubahan dan biaya sudah optimal, namun jika masih terdapat hasil minus, maka perubahan akan terus dilakukan
![CONTOH Lakukan perubahan seperti stepping stone pada CD dengan nilai peubah adalah 100 CONTOH • Lakukan perubahan seperti stepping stone pada CD dengan nilai peubah adalah 100](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-35.jpg)
CONTOH • Lakukan perubahan seperti stepping stone pada CD dengan nilai peubah adalah 100 Dari/ ke GUDANG A GUDANG B PABRIK D PABRIK E PABRIK F SUPPLY 400 100 GUDANG C X PERMINTAAN 500 5 12 4 X 600 200 800 13 2 9 X X 700 6 11 3 400 700 900 2000
![CONTOH Hasil perubahan seperti tabel disamping Lakukan lagi mencari nilai basis dan CONTOH • Hasil perubahan seperti tabel disamping. • Lakukan lagi mencari nilai basis dan](https://slidetodoc.com/presentation_image_h/1b02ce560afa8fb3cac06359d374a551/image-36.jpg)
CONTOH • Hasil perubahan seperti tabel disamping. • Lakukan lagi mencari nilai basis dan non basis untuk mencari tabel yang belum optimal. • Jika kotak non basis sudah positif semua, maka tidak perlu dilakukan perubahan lagi, namun jika masih terdapat negative maka dilakukan perubahan lagi. Dari/ ke GUDANG A GUDANG B PABRIK D PABRIK E PABRIK F SUPPLY 400 X GUDANG C 100 PERMINTAAN 500 5 12 4 X 700 100 800 13 2 9 X X 700 6 11 3 400 700 900 2000
Tab yang digunakan untuk mengatur
Gridlines digunakan untuk
Metode transportasi
Suatu metode yang digunakan untuk
Metode stepping stone
Transportasi
Metode transportasi nwc, lc dan vam
Contoh soal metode transportasi riset operasi
Pengertian jalan rel
Pengertian manajemen transportasi
Perubahan nomor urut pegawai dari duk dilakukan apabila
Menambahkan suara pada project sratch bisa menggunakan
Shape hints merupakan jenis animasi untuk mengatur
Pengertian mengatur
Algoritma greedy digunakan untuk menyelesaikan masalah
Sifat produk yang dihasilkan transportasi
Hukum yang mengatur kegiatan penyusutan
Ciri ciri mitosis dan meiosis
Hormon yang mengatur terhadap pematangan ciri seks sekunder
Hormon yang mengatur gula darah
Perintah use namafiledb perintah yang digunakan untuk ?
Perangkat lunak terbagi menjadi
Makna istinjak
Panduan yang digunakan untuk menentukan arah dalam navigasi
Kwh meter adalah alat yang digunakan untuk mengukur ….
Alat yang digunakan untuk mengolah data adalah......
Cara pemasangan kabel straight
Perintah untuk membuat grafik terdapat pada tab
Trafo adalah peralatan listrik yang digunakan untuk
7 alat bantu untuk problem solving
Contoh soal uji pihak kanan
Model yang digunakan untuk mendesain layout adalah kecuali
Alat penghidang makanan
Arti b dan k pada peta jabatan
Data yang digunakan untuk operasi perhitungan adalah ...
Lensa objektif sebuah teropong panggung
Perangkat lunak adalah