Methodology u DM Data Mining u Methodology Methodology



























































- Slides: 59






DM Methodology (注) u DM: Data Mining (データマイニング) u Methodology: 方法論

DM Methodology 1. Exploratory data analysis (探索的データ解析) 2. Computational data mining (計算論的データマイニング) 3. Statistical data mining (統計的データマイニング)

DM Methodology 1. Exploratory data analysis (探索的データ解析) 2. Computational data mining (計算論的データマイニング) 3. Statistical data mining (統計的データマイニング)

1.Exploratory data analysis a. 統計的データ解析(SDA) b. 探索的データ解析(EDA)



探索的データ解析(EDA) 1. 2. 3. 4. 5. 6. 7. 幹葉表示(stem-and-leaf display) 要約値(letter value display) 箱ヒゲ図(box-whisker plots) X-Y表示(X-Y plotting) 抵抗性のある直線回帰(registant line) 中央値分散分析(median polish) 時系列データのならし(smoothing)


DM Methodology 1. Exploratory data analysis (探索的データ解析) 2. Computational data mining (計算論的データマイニング) 3. Statistical data mining (統計的データマイニング)

3.Statistical data mining a. b. c. d. e. f. Statistic models(統計モデル) Statistic inference(統計的推論) Non-parametric model General linear model Log-linear model Graphical model etc.

DM Methodology 1. Exploratory data analysis (探索的データ解析) 2. Computational data mining (計算論的データマイニング) 3. Statistical data mining (統計的データマイニング)

2.Computational data mining 1. 2. 3. 4. 5. 6. Cluster analysis(クラスター分析) Tree models(木モデル) Linear regression(線形回帰) Logistic regression(ロジスティック回帰) Neural networks(ニューラルネットワーク) ILP(Inductive Logic Programming; 帰納論理プログラミング) 7. SVM(support vector machines) etc.

2.Computational data mining a. b. c. d. e. f. Tree models(木モデル) Cluster analysis(クラスター分析) Linear regression(線形回帰) Logistic regression(ロジスティック回帰) Neural networks(ニューラルネットワーク) ILP(Inductive Logic Programming; 帰納論理プログラミング) etc.

a.クラスター分析 i. Hierarchical methods(階層型法) ii. Non-hierarchical methods(非階層型法)








































Mining complex types of data in data mining
Mining multimedia databases in data mining
Strip mining vs open pit mining
Strip mining before and after
Difference between strip mining and open pit mining
Web text mining
Data reduction in data mining
What is kdd process in data mining
What is missing data in data mining
Concept hierarchy generation for nominal data
Data reduction in data mining
Data reduction in data mining
Data cube technology in data mining
Data reduction in data mining
Arsitektur data mining
Perbedaan data warehouse dan data mining
Crm data warehouse models
Complex data types in data mining
Data warehousing data mining and olap
Noisy data in data mining
Three-tier data warehouse architecture
Markku roiha
Data compression in data mining
Introduction to data warehousing and data mining
Data warehouse dan data mining
Cs 412 introduction to data mining
Data mining major issues
Unsupervised learning in data mining
Motivation for data mining
Data mining slides
Query tools in data mining
Pump it up: data mining the water table
Tahapan utama pada proses data mining
Peran utama data mining adalah sebagai berikut
Olap stands for *
Bloom filter for stream data mining
Data mining steps
Data mining midterm exam with solutions
Multidimensional space in data mining
Data mining roadmap
Weka pentaho
Spatial data mining applications
Walmart data mining
Ibm data mining
Spss data mining
Frequent itemset mining methods
Objective of data mining
Emr data mining
Cur decomposition in data mining
Dss in data mining
Data maining
Overfitting in data mining
Svd data mining
Data mining lectures
Data mining functionality
Nominal attribute in data mining
Correlation data mining
Types of attributes in data mining
Confluence of multiple disciplines in data mining
Information gain in data mining