Mechanisms of Cell Death Etiology of cell death

  • Slides: 42
Download presentation
Mechanisms of Cell Death

Mechanisms of Cell Death

Etiology of cell death Major Factors Accidental Genetic Necrosis Apoptosis Necrosis: The sum of

Etiology of cell death Major Factors Accidental Genetic Necrosis Apoptosis Necrosis: The sum of the morphologic changes that follow cell death in a living tissue or organ Apoptosis: a physiological process that includes specific suicide signals leading to cell death

Distinct modalities of cell death Cell death mode Morphological features Notes Apoptosis • Rounding-up

Distinct modalities of cell death Cell death mode Morphological features Notes Apoptosis • Rounding-up of the cell • Retraction of pseudopodes • Reduction of cellular and nuclear volume (pyknosis) • Nuclear fragmentation (karyorrhexis) • Minor modification of cytoplasmic organelles • Plasma membrane blebbing • Engulfment by resident phagocytes, in vivo ‘Apoptosis’ is the original term introduced by Kerr et al. 14 to define a type of cell death with specific morphological features. Apoptosis is NOT a synonym of programmed cell death or caspase activation. Autophagy • Lack of chromatin condensation • Massive vacuolization of the cytoplasm • Accumulation of (double-membraned) autophagic vacuoles • Little or no uptake by phagocytic cells, in vivo ‘Autophagic cell death’ defines cell death occurring with autophagy, though it may misleadingly suggest a form of death occurring by autophagy as this process often promotes cell survival. 15, 16 Cornification • Elimination of cytosolic organelles • Modifications of plasma membrane • Accumulation of lipids in F and L granules • Extrusion of lipids in the extracellular space • Desquamation (loss of corneocytes) by protease activation ‘Cornified envelope’ formation or ‘keratinization’ is specific of the skin to create a barrier function. Although apoptosis can be induced by injury in the basal epidermal layer (e. g. , UV), cornification is exclusive of the upper layers (granular layer and stratum corneum). 17, 18 • Cytoplasmic swelling (oncosis) • Rupture of plasma membrane • Swelling of cytoplasmic organelles • Moderate chromatin condensation ‘Necrosis’ identifies, in a negative fashion, cell death lacking the features of apoptosis or autophagy. 4 Note that necrosis can occur in a regulated fashion, involving a precise sequence of signals. Necrosis Cell Death Differ. 2009, 16(1): 3– 11

The road to necrosis Homeostatic ‘steady state’ Cellular adaptations Reversible cell injury Irreversible cell

The road to necrosis Homeostatic ‘steady state’ Cellular adaptations Reversible cell injury Irreversible cell injury Cell death Necrosis

Necrosis: consequences of irreversible cell injury

Necrosis: consequences of irreversible cell injury

Pathogenesis of necrosis

Pathogenesis of necrosis

Necrosis: a pathological response to cellular injury Apoptosis: a physiological response to specific suicide

Necrosis: a pathological response to cellular injury Apoptosis: a physiological response to specific suicide signals, or lack of survival signals Chromatin clumps Chromatin condenses and migrates to nuclear membrane. Internucleosomal cleavage leads to laddering of DNA at the nucleosomal repeat length, ca. 200 bp. Mitochondria swell and rupture Cytoplasm shrinks without membrane rupture Plasma membrane lyses Blebbing of plasma and nuclear membranes Cell contents spill out Cell contents are packaged in membrane bounded bodies, internal organelles still functioning, to be engulfed by neighbours. General inflammatory response is triggered Epitopes appear on plasma membrane marking cell as a phagocytic target. No spillage, no inflammation www. chembio. uoguelph. ca

APOPTOSIS AS A PHYSIOLOGICALLY IMPORTANT PROCESS In embryonic and fetal development: • Tissue developmental

APOPTOSIS AS A PHYSIOLOGICALLY IMPORTANT PROCESS In embryonic and fetal development: • Tissue developmental programs which control sculpting of embryonic form • Developmental organization of the nervous system • Elimination of self-reactive components of the immune system In the adult: • On stimulation by T-lymphocytes • In response to DNA damage or abnormality, e. g. by radiation, viral infection or transformation • In certain organs and tissues, on withdrawal of supporting hormones In addition, there are often apoptotic centers in tumors, accounting for the paradox of slow gross enlargement in the face of rapid cell proliferation, and the rare spontaneous remission. www. chembio. uoguelph. ca

APOPTOSIS in C. elegans genome: 19099 genes (790 seven-pass transmembrane receptors, 480 zinc finger

APOPTOSIS in C. elegans genome: 19099 genes (790 seven-pass transmembrane receptors, 480 zinc finger proteins, and 410 protein kinases) The life cycle of C. elegans from egg to sexual maturity (and new eggs) is about 3 days ced-1, -3, -4, and -9 (Cell death determining) proteins in C. elegans are closely related to mammalian apoptosisregulating genes The adult hermaphrodite consists of exactly 959 somatic cells of precisely determined lineage and function. Individual cells are named and their relationships to their neighbors are known Overall, the 959 somatic cells of adult C. elegans arise from 1090 original cells; exactly 131 somatic cells undergo programmed cell death in the wild type worm Of the 1090 cells, 302 are neurons, and many of the programmed deaths also lie in the neuronal lineage www. chembio. uoguelph. ca

Autophagic cell death (type II programmed cell death) – meaning that the cytoplasm is

Autophagic cell death (type II programmed cell death) – meaning that the cytoplasm is actively destroyed long before nuclear changes become apparent; Classical apoptotic cell death – meaning that the chromatin marginates and the cell and nucleus fragment before morphological changes are seen in intracellular organelles Nature Immunology 4, 416 - 423 (2003)

APOPTOSIS SIGNALS Mitochondriadependent apoptosis Caspaseindependent apoptosis Nature Reviews Cancer 2; 647 -656 (2002) Death

APOPTOSIS SIGNALS Mitochondriadependent apoptosis Caspaseindependent apoptosis Nature Reviews Cancer 2; 647 -656 (2002) Death Receptordependent apoptosis Caspaseindependent necrosis

Galluzzi et al. Cell Death & Differentiation (2012) 19, 107– 120

Galluzzi et al. Cell Death & Differentiation (2012) 19, 107– 120

Caspase-dependent and -independent ‘intrinsic apoptosis’ In response to multiple intracellular stress conditions (e. g.

Caspase-dependent and -independent ‘intrinsic apoptosis’ In response to multiple intracellular stress conditions (e. g. , DNA damage, cytosolic Ca 2þ overload), pro-survival and pro-death signals are generated and converge to a mitochondrion-centered control mechanism. When lethal signals prevail, mitochondrial outer membrane permeabilization (MOMP) occurs and leads to mitochondrial trans-membrane potential (Dcm) dissipation, arrest of mitochondrial ATP synthesis and Dcm-dependent transport activities. Moreover, the respiratory chains gets uncoupled, leading to generation of reactive oxygen species (ROS), and proteins that are normally confined within the mitochondrial intermembrane space (IMS) are released into the cytosol. Among these, cytochrome c (CYTC) drives – together with the cytoplasmic adaptor protein APAF 1 and d. ATP – the assembly of the so-called apoptosome, a multiprotein complex that triggers the caspase-9 -caspase-3 proteolytic cascade. Direct IAP-binding protein with low p. I (DIABLO, also known as second mitochondria-derived activator of caspases, SMAC) and high temperature requirement protein A 2 (HTRA 2) facilitate caspase activation by sequestering and/or degrading several members of the inhibitor of apoptosis protein (IAP) family. On the contrary, apoptosis-inducing factor (AIF) and endonuclease G (ENDOG) function in a caspaseindependent manner by relocating to the nucleus and mediating large-scale DNA fragmentation. Of note, the serine protease HTRA 2 also contributes to caspaseindependent apoptosis by cleaving a wide array of cellular substrates (including cytoskeletal proteins). IM, mitochondrial inner membrane; OM, mitochondrial outer membrane; PTPC, permeability transition pore Galluzzi et al. complex Cell Death & Differentiation (2012) 19, 107– 120

Extrinsic Apoptosis: apoptotic cell death that is induced by extracellular stress signals that are

Extrinsic Apoptosis: apoptotic cell death that is induced by extracellular stress signals that are sensed and propagated by specific transmembrane receptors Upon FAS ligand (FASL) binding, the cytoplasmic tails of FAS (also known as CD 95, a prototypic death receptor) trimers recruit (among other proteins) FASassociated protein with a death domain (FADD), cellular inhibitor of apoptosis proteins (c. IAPs), c-FLIPs and pro-caspase-8 (or -10). This supramolecular platform, which has been dubbed ‘death-inducing signaling complex’ (DISC), controls the activation of caspase-8 (-10). Within the DISC, c-FLIPs and c. IAPs exert pro-survival functions. However, when lethal signals prevail, caspase-8 gets activated and can directly trigger the caspase cascade by mediating the proteolytic maturation of caspase-3 (in type I cells) or stimulate mitochondrial outer membrane permeabilization (MOMP) by cleaving the BH 3 -only protein BID (in type II cells). Extrinsic apoptosis can also be ignited by dependence receptors like DCC or UNC 5 B, which relay lethal signals in the absence of their ligand (netrin-1). In the case of DCC and UNC 5 B, the pro-apoptotic signaling proceeds through the assembly of a DRAL- and TUCAN- (or NLRP 1 -) containing caspase-9 -activating platform or by the dephosphorylation-mediated activation of deathassociated protein kinase 1 (DAPK 1) by UNC 5 B-bound protein phosphatase 2 A (PP 2 A), respectively. DAPK 1 can mediate the direct activation of executioner caspases or favor MOMP. t. BID, truncated BID Galluzzi et al. Cell Death & Differentiation (2012) 19, 107– 120

Regulated Necrosis: necrosis can occur in a regulated manner in addition to spontaneous cell

Regulated Necrosis: necrosis can occur in a regulated manner in addition to spontaneous cell death Upon tumor necrosis factor a (TNFa) binding, the cytoplasmic tails of TNF receptor 1 (TNFR 1, a prototypic death receptor) trimers recruit TNFRassociated death domain (TRADD), receptorinteracting protein kinase 1 (RIP 1), cellular inhibitor of apoptosis 1 (c. IAP 1), c. IAP 2, TNFR-associated factor 2 (TRAF 2) and TRAF 5. Within the so-called complex I, RIP 1 is polyubiquitinated by c. IAPs, thereby providing a docking site for the recruitment of transforming growth factor b (TGFb)-activated kinase 1 (TAK 1), TAK 1 -binding protein 2 (TAB 2) and TAB 3 (which together deliver a pro-survival signal by activating the transcription factor NF-k. B). In some pathophysiological and experimental settings, and in particular when caspase-8 is absent or when caspases are inhibited by pharmacological agents, cylindromatosis (CYLD)-deubiquitinated RIP 1 engage in physical and functional interactions with its homolog RIP 3, ultimately activating the execution of necrotic cell death. Regulated necrosis can also be induced by alkylating DNA damage (possibly by the overactivation of poly(ADP-ribose) polymerase 1, PARP 1). In some (but not all) instances, regulated necrosis requires the kinase activity of RIP 1, that is, it can be blocked by the RIP 1 -targeting compounds necrostatins. FADD, FASassociated protein with a death domain Galluzzi et al. Cell Death & Differentiation (2012) 19, 107– 120

 • • • Mitotic catastrophe: cell death occurring in mitosis cases of cell

• • • Mitotic catastrophe: cell death occurring in mitosis cases of cell death that are triggered by aberrant mitosis and executed either during mitosis or in the subsequent interphase might not even constitute a bona fide cell death executioner mechanism, but an onco-suppressive pathway that precedes and is distinct from, yet operates through, cell death or senescence (a) In the absence of chemical and genetic perturbations of the mitotic apparatus (including chromosomes and the molecular machinery that ensures their faithful segregation), cells progress through the different phases of the cell cycle to generate a diploid offspring. On the contrary, if chromosomal defects or problems affecting the mitotic machinery are sensed during the M phase, cells become arrested in mitosis due to the activation of mitotic catastrophe (b–d). These cells can undergo different fates: they can die without exiting mitosis (b), reach the G 1 phase of the subsequent cell cycle (through a phenomenon that is known as mitotic slippage) and then die (c), or exit mitosis and undergo senescence (d). Irrespective of this diversity of outcomes, mitotic catastrophe can be defined as an oncosuppressive mechanism that precedes and is distinct from, but operates through, cell death and senescence Galluzzi et al. Cell Death & Differentiation (2012) 19, 107– 120

Autophagic cell death: instances of cell death that are accompanied by a massive cytoplasmic

Autophagic cell death: instances of cell death that are accompanied by a massive cytoplasmic vacuolization In response to stress and during development, eukaryotic cells often activate autophagy, a mechanism whereby organelles and portion of the cytoplasm are sequestered in double-membraned vesicles (autophagosomes) that are delivered to lysosomes for degradation. Stress-induced autophagy most often exerts cytoprotective functions and favors the re-establishment of homeostasis and survival (a). In this setting, pharmacological or genetic inhibition of autophagy accelerates cell death. On the contrary, these interventions frequently inhibit developmental cell death, indicating that autophagy also constitutes a lethal mechanism that mediates ‘autophagic cell death’ (b) Galluzzi et al. Cell Death & Differentiation (2012) 19, 107– 120

The target sequence for Ced-3 and caspases (Cys catalytic Asp targeting proteases) consists of

The target sequence for Ced-3 and caspases (Cys catalytic Asp targeting proteases) consists of a tetrapeptide with C-terminal Asp (D).

Methods Enzymol. 2008; 442: 157 -81

Methods Enzymol. 2008; 442: 157 -81

Caspase cascades and their inhibitors Formation of multicomponent complexes triggers initiator caspase dimerization sufficient

Caspase cascades and their inhibitors Formation of multicomponent complexes triggers initiator caspase dimerization sufficient for their activation: • DISC: Death-inducing signaling complex • Apoptosome • (PIDD)osome: p 53 induced protein with a death domain Cell Death and Differentiation (2011) 18, 1441– 1449

Methods Enzymol. 2008; 442: 157 -81

Methods Enzymol. 2008; 442: 157 -81

In vivo substrates of effector caspases Nuclear Lamins, nucleoplasmin, the SR protein 70 K

In vivo substrates of effector caspases Nuclear Lamins, nucleoplasmin, the SR protein 70 K U 1, hn. RNP C, RNA Pol I upstream binding factor, the p 53 regulator MDM 2, p. RB, p 27 Kip and p 21 Cip DNA related MCM 3, Repair enzymes including Rad 51, poly-ADP-ribose polymerase (PARP), topoisomerase, inhibitor of caspase activated DNase, ( i. CAD/DFF 45) Cytoskeleton actin, gelsolin, spectrin, keratin Cytoplasmic ß-catenin, Bcl-2 Protein kinases DNA dependent protein kinase, protein kinase C, CAM kinase, focal adhesion kinase, MAP and ERK kinases, Raf 1, Akt 1/protein kinase B, ROCK I. www. chembio. uoguelph. ca

Mitochondria play a central role in mediating the apoptotic signal Mitochondria-free cytoplasm would not

Mitochondria play a central role in mediating the apoptotic signal Mitochondria-free cytoplasm would not induce apoptosis in vitro Cytochrome c-neutralizing antibodies block apoptosis Cytochrome c is an abundant protein of the mitochondrial inner membrane, and acts as an electron transport intermediate. a and b type cytochromes are inaccessible components of large complexes, but cytochrome c is monomeric, freely diffusible in the inner membrane, and in equilibrium between inner membrane, inter-membrane space and cristae. The events of apoptotic activation lead to alterations in permeability of the mitochondrial membrane pore proteins and release of cytochrome c. Initial release of cytochrome c occurs by a highly specific process, involving proteins of the Bcl-2 family www. chembio. uoguelph. ca

Signaling leading to activation of mitochondria-related apoptosis Death receptors of the TNFR family, as

Signaling leading to activation of mitochondria-related apoptosis Death receptors of the TNFR family, as well as various oxidants, detergents and chemotherapeutic drugs, induce the release of active cathepsins from the lysosomal compartment. These cathepsins cleave Bid, which can then mediate cathepsin-induced MPT. Disruption of the cytoskeleton leads to the release of the BH 3 domain–only proteins Bim and Bmf. DNA damage induced by radiation or various chemotherapeutic drugs induces the p 53 -mediated transcription of genes encoding Bax, BH 3 domain–only proteins (Noxa or Puma), proteins involved in ROS generation and cathepsin D. ER stress results in the release of calcium, which may cause direct mitochondrial damage or activate Bax through calpainmediated cleavage. Various death stimuli, mediated through death receptors, trigger the production of lipid second messengers (such as ganglioside (GD 3), arachidonic acid (AA) and ceramide) that are involved in MPT and mitochondrial damage. Depending on the stimulus and the type of cell, as well as the metabolic status of the cell, MPT leads to either caspase-mediated apoptosis or caspaseindependent PCD. Nature Immunology 4, 416 - 423 (2003)

Bcl-2 family: Pro-Life and Pro-Death factions Bcl-2 and its closest relatives Bcl-XL, Bcl-w and

Bcl-2 family: Pro-Life and Pro-Death factions Bcl-2 and its closest relatives Bcl-XL, Bcl-w and Ced-9 are a-helical proteins having all four BH domains and are pro-survival. They suppress cytochrome c release, and are oncogenic when overexpressed. However, Bcl-XS, a splice variant of Bcl-XL having BH 4 but lacking BH 1 and BH 2 is pro-apoptotic. Bax and Bak lack the BH 4 domain, and are pro-apoptotic. Bax expression is stimulated by p 53, a mechanism for pro-apoptotic action of p 53. Ectopic or overexpression of Bax induces cytochrome c release and apoptosis, and addition of Bax to mitochondria in vitro induces cytochrome c release. The BH 3 -only sub group are strongly pro-apoptotic, and include Bim, Bik and Egl-1, which only have the 18 -residue BH 3 and the transmembrane region, while Bad and Bid only have BH 3. The helical BH 3 element allows for homo- and heterodimerization between family members. The non-homologous regions of BH 3 -only proteins could provide links to apoptotic signaling systems. www. chembio. uoguelph. ca

Bcl-2 family: Pro-Life and Pro-Death factions Effector caspases Caspase-9 Vertebrate Apaf-1 activation occurs through

Bcl-2 family: Pro-Life and Pro-Death factions Effector caspases Caspase-9 Vertebrate Apaf-1 activation occurs through cytochrome c binding. Bcl-2 and Bcl-XL appear to act by dimerizing with pro-apoptotic agonists such as Bax or Bak. Normally, the balance is in favor of Bcl-2 or Bcl. XL, but the BH 3 -only factors appear to act to titrate out the Bcl 2/Bcl-XL, tipping the balance in favor of Bax/Bak. Bax can oligomerize in the membrane to form a permeability channel able to transport cytochrome c. BH 3 -only factors have been reported to induce reorganization of the cristae. Alternative models suggest that Bid/Bak-like factors act to open permeability channels such as the permeability transition pore, by disrupting the membrane potential, and affecting the voltage-dependent anion channel VDAC and ATP/ADP exchange transporter. www. chembio. uoguelph. ca

Mechanisms of mitochondrial outer membrane permeabilization during cell death. AIF: apoptosis inducing factor; ANT:

Mechanisms of mitochondrial outer membrane permeabilization during cell death. AIF: apoptosis inducing factor; ANT: adenine nucleotide translocase; CL: cardiolipin; Cyt c: cytochrome c; Cy. D: cyclophilin D; Cs. A: cyclosporin A; IMM: inner mitochondrial membrane; MPT: mitochondrial permeability transition; OMM: outer mitochondrial membrane; VDAC: voltage-dependent anion channel. Orrenius et al. , Ann Rev Pharmacol Toxicol 2007

Mitochondria permeability transition can trigger caspase-dependent and caspase-independent programmed cell death (PCD): • •

Mitochondria permeability transition can trigger caspase-dependent and caspase-independent programmed cell death (PCD): • • • Mitochondrial damage leads to the release of numerous mitochondrial proteins that mediate PCD. Release of cytochrome c triggers caspase activation and classic apoptosis. Smac (also known as Diablo) and Omi assist cytochrome c–induced caspase activation by counteracting caspase inhibitory factors (IAPs). AIF triggers a caspase-independent death pathway that culminates in DNA fragmentation and chromatin condensation characteristic of apoptosis-like PCD. Endo. G cleaves DNA and induces chromatin condensation The serine protease activity of Omi can mediate caspase-independent cellular rounding and shrinkage without changes in the nuclear morphology Calcium and ROS can lead to severe mitochondrial dysfunction and necrosis-like PCD either directly or through autophagy of damaged mitochondria. Autophagy also may be associated with cathepsin activation and so can result in apoptosis-like PCD. Nature Immunology 4, 416 - 423 (2003)

Survival mechanisms downstream of cytochrome c 1. Sequestration by heat shock proteins: Apaf 1

Survival mechanisms downstream of cytochrome c 1. Sequestration by heat shock proteins: Apaf 1 interacts with heat shock proteins hsp 70 and hsp 90. Hsp 70 directly sequesters CARD, and blocks caspase-9 recruitment, and possibly assembly of the oligomeric apoptosome as well. Hsp 90 also associates with the monomeric Apaf 1, and may represent a significant fraction of the normal autoinhibited state. Hsp 90 appears to compete with cytochrome c for binding, suggesting action at an earlier step than hsp 70. 2. Direct inhibition of the caspase catalysis by Inhibitor of Apoptosis Proteins (IAPs): Inhibitor of apoptosis proteins (IAPs) represent the final line of defense against apoptosis, and act by binding directly to the substrate site of caspases Smac/DIABLO: the mitochondrial answer to IAPs: Mitochondria initiate the apoptosis cascade by releasing cytochrome c, but this effect could be nullified if IAP were allowed to maintain their inhibition of caspases. The apoptotic signal is instead sustained by the release of Smac/DIABLO (second mitochondrial activator of caspase/direct IAP binding protein of low p. I), which binds to and antagonizes the IAPs. www. chembio. uoguelph. ca

DEATH RECEPTORS: Pathways linking external signal receptors to caspase-8 A variety of cell surface

DEATH RECEPTORS: Pathways linking external signal receptors to caspase-8 A variety of cell surface receptors related to TNF-R (tumor necrosis factor receptor) interact with the apoptotic activation system. The intracellular portion of the receptor carries a specific protein interaction domain called the death domain, DD. The DD is activated by proximity, brought about when bound extracellular ligand induces receptor oligomerization. Activation can also be induced in absence of ligand by artificial cross-linking of the receptor. Clustered receptor DDs recruit a variety of DD-containing adapters, of which FADD, Fas-associated death domain protein (also known as MORT 1) bridges to a second protein interaction domain, DED, or death effector domain. The cluster of FADD-DEDs recruits procaspase-8, which also carries DEDs at its N-terminus (corresponding to the CARDs on Procaspase-9). Procaspase-8 is activated to Caspase-8 by proximity-induced selfcleavage. Procaspase-10 is the only other caspase with DED boxes, and may substitute for Caspase-8 in some cases. In some cells, TNF receptors associate with adaptors linked to cell proliferation or inflammatory signaling pathways, and may induce anti-apoptotic c-IAPs. www. chembio. uoguelph. ca

Receptor Ligand Adaptor Target Fas/CD 95/APO-1 Fas-L/APO-1 L FADD/MORT 1 Procaspase-8, apoptosis TNF-R 1

Receptor Ligand Adaptor Target Fas/CD 95/APO-1 Fas-L/APO-1 L FADD/MORT 1 Procaspase-8, apoptosis TNF-R 1 TNFa TRADD+FADD Procaspase-8, apoptosis TNF-R 1 TNFa TRADD+RIP 1+TRAF 2 MEKK, Jun/Ap 1, cell proliferation, IKK, NF-k. B, inflammation, c-IAPs TNF-R 2/CD 40 TNFa TRAF 2+TRAF 1 MEKK, Jun/Ap 1, cell proliferation, IKK, NF-k. B, inflammation, c-IAPs DR 3/APO-3 L FADD? Procaspase-8, apoptosis DR 4 TRAIL/APO-2 L FADD Procaspase-8, apoptosis DR 5 TRAIL/APO-2 L FADD Procaspase-8, apoptosis Dc. R 1 TRAIL/APO-2 L none decoy receptor, ligand sequestration Dc. R 2 TRAIL/APO-2 L none decoy receptor, ligand sequestration Dc. R 3 Fas-L/APO-1 L none decoy receptor, ligand sequestration

Death receptor–triggered caspase-dependent and caspase-independent pathways The death receptor is stimulated by ligand -induced

Death receptor–triggered caspase-dependent and caspase-independent pathways The death receptor is stimulated by ligand -induced activation of the receptor trimer. The receptor death domains (DDs) of Fas then recruit FADD and RIP 1 to the receptor complex. After recruitment to FADD through interactions between their death effector domains (DEDs), caspase 8 and caspase-10 are activated and trigger effector caspases, either directly or through a Bid-mediated mitochondrial pathway (activation of Apaf-1 and caspase-9). FADD and RIP initiate a caspaseindependent necrotic pathway mediated by the formation of, most probably, mitochondrion- or c. PLA 2 derived ROS. TNFR 1 signaling differs from Fas signaling in the following steps: first, binding of FADD and RIP to the receptor complex requires the adaptor protein TRADD; and second, the RIP 1 mediated necrotic pathway is inhibited by FADD and activated caspase-8 Nature Immunology 4, 416 - 423 (2003)

“Gentamicin is an aminoglycoside antibiotic widely used against infections by Gram-negative microorganisms. Nephrotoxicity is

“Gentamicin is an aminoglycoside antibiotic widely used against infections by Gram-negative microorganisms. Nephrotoxicity is the main limitation to its therapeutic efficacy. Gentamicin nephrotoxicity occurs in 10– 20% of therapeutic regimes. A central aspect of gentamicin nephrotoxicity is its tubular effect, which may range from a mere loss of the brush border in epithelial cells to an overt tubular necrosis. ” Curr Opin Rheumatol. 2012, 24(6): 663 -8.

Figure 1. Methods to detect cell death-related variables. Nowadays, a cornucopia of techniques is

Figure 1. Methods to detect cell death-related variables. Nowadays, a cornucopia of techniques is available to monitor cell deathrelated parameters. Within this ‘methodological abundance/redundancy’, the choice of the most appropriate techniques and the correct interpretation of results are critical for the success of any study dealing with cell death. Here, the most common procedures to detect dead/dying cells are indicated, together with the technical platforms that are required for their execution and the types of specimens on which they can be applied. Please see the main text for further details. Dcm, mitochondrial transmembrane potential; HPLC, high-pressure liquid chromatography; MOMP, mitochondrial outer membrane permeabilization; MPT, mitochondrial permeability transition; MS, mass spectrometry; NMR, nuclear magnetic resonance; PS, phosphatidylserine; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis

Detection of apoptotic changes in DNA: • Nucleic acid staining – nuclear morphology •

Detection of apoptotic changes in DNA: • Nucleic acid staining – nuclear morphology • Detection of nuclear DNA fragmentation • TUNEL staining • Single-cell electrophoresis (Comet assay) Molecular Probes, Inc. (terminal deoxynucleotidyl transferase–mediated d. UTP nick end-labeling)

Detection of changes in cell membrane integrity: • Membrane permeability Molecular Probes, Inc. •

Detection of changes in cell membrane integrity: • Membrane permeability Molecular Probes, Inc. • Phospholipid symmetry (Annexin V staining)

Detection of apoptotic changes in mitochondria: Morphology MPT Molecular Probes, Inc. Caspase Protease Assays

Detection of apoptotic changes in mitochondria: Morphology MPT Molecular Probes, Inc. Caspase Protease Assays (individual caspases):

Detection of pro- and anti-apoptosis proteins, Fas-ligands, cytokines, etc. Detecting changes in gene expression

Detection of pro- and anti-apoptosis proteins, Fas-ligands, cytokines, etc. Detecting changes in gene expression for pro- and anti-apoptosis genes

“Artemisinin and its derivatives are currently recommended as first -line antimalarials in regions where

“Artemisinin and its derivatives are currently recommended as first -line antimalarials in regions where Plasmodium falciparum is resistant to traditional drugs. The cytotoxic activity of these endoperoxides toward rapidly dividing human carcinoma cells and cell lines has been reported, and it is hypothesized that activation of the endoperoxide bridge by an iron(II) species, to form Ccentered radicals, is essential for cytotoxicity. The studies described here have utilized artemisinin derivatives, dihydroartemisinin, 10 -(p-bromophenoxy)dihydroartemisinin, and 10 -(pfluorophenoxy)dihydroartemisinin, to determine the chemistry of endoperoxide bridge activation to reactive intermediates responsible for initiating cell death and to elucidate the molecular mechanism of cell death. These studies have demonstrated the selective cytotoxic activity of the endoperoxides toward leukemia cell lines (HL-60 and Jurkat) over quiescent peripheral blood mononuclear cells. Deoxy-10 -(p-fluorophenoxy)dihydroartemisinin, which lacks the endoperoxide bridge, was 50 - and 130 -fold less active in HL-60 and Jurkat cells, respectively, confirming the importance of this functional group for cytotoxicity. We have shown that chemical activation is responsible for cytotoxicity by using liquid chromatography-mass spectrometry analysis to monitor endoperoxide activation by measurement of a stable rearrangement product of endoperoxide-derived radicals, which was formed in sensitive HL-60 cells but not in insensitive peripheral blood mononuclear cells. In HL-60 cells the endoperoxides induce caspase-dependent apoptotic cell death characterized by concentration- and time-dependent mitochondrial membrane depolarization, activation of caspases-3 and -7, sub-G 0/G 1 DNA formation, and attenuation by benzyloxycarbonyl-VADfluoromethyl ketone, a caspase inhibitor. Overall, these results indicate that endoperoxide-induced cell death is a consequence of activation of the endoperoxide bridge to radical species, which triggers caspase-dependent apoptosis. ”

“In HL-60 cells the endoperoxides induce caspase-dependent apoptotic cell death characterized by concentration- and

“In HL-60 cells the endoperoxides induce caspase-dependent apoptotic cell death characterized by concentration- and timedependent mitochondrial membrane depolarization, activation of caspases-3 and -7, sub-G 0/G 1 DNA formation, and attenuation by benzyloxycarbonyl-VAD-fluoromethyl ketone, a caspase inhibitor. Overall, these results indicate that endoperoxide-induced cell death is a consequence of activation of the endoperoxide bridge to radical species, which triggers caspase-dependent apoptosis. ”