Measurement Accuracy Precision Accuracy How close a measurement

  • Slides: 16
Download presentation
Measurement Accuracy & Precision

Measurement Accuracy & Precision

Accuracy How close a measurement is to the actual value

Accuracy How close a measurement is to the actual value

Precision How close a series of measurements are to each other

Precision How close a series of measurements are to each other

Significant figures We get sig figs from the idea that we can only be

Significant figures We get sig figs from the idea that we can only be a precise as our least precise measurement. Basically, sig figs tell us how Exact our numbers are!

Rules for identifying sig figs 1. 2. 3. All NON-zero digits are significant All

Rules for identifying sig figs 1. 2. 3. All NON-zero digits are significant All zeros between 2 non-zero digits are significant Zeroes to left of understood decimal point are NOT SIGNIFICANT! Ex) 23. 45 (4 SF’s) Ex) 2002 (4 SF’s) Ex) 12. 002 (5 SF’s) Ex) 1200 (2 sig figs)

Sig figs (cont) 4. All zeros to the left of a expressed decimal point

Sig figs (cont) 4. All zeros to the left of a expressed decimal point are significant if number is greater than 1 5. All zeros to right of a decimal point, but left of non-zero digit are NOT SIGNIFICANT! (if number is less than 1) 200. (3 SF’s) 12320. (5 SF’s) 0. 00045 (2 SF’s) 0. 01 (1 SF)

Sig figs (cont) (3 SF’s) of decimal and 0. 02000 (4 right of non

Sig figs (cont) (3 SF’s) of decimal and 0. 02000 (4 right of non zero SF’s) 6. All zeros to right digit are significant 0. 0300

Sig figs (cont) 7. All digits expressed in front of power of 10 in

Sig figs (cont) 7. All digits expressed in front of power of 10 in Scientific Notation are significant. Ex) 5. 334 X 103 (4 SF’s) Ex) 3. 00 X 10 -5 (3 SF’s)

Identifying Practice 1 2 3 4 5 6 7 8 9 5. 550 g

Identifying Practice 1 2 3 4 5 6 7 8 9 5. 550 g 100 hs 3450 dg 0. 000023404 cg 7. 650 mm 400. L 230. 00 das 3. 45 X 1012 kg 9. 240 X 10 -2 cs 4 1 3 5 4 3 5 3 4

Identifying Extra Practice 1. 2. 3. 4. 5. 6. 7. 8. 7. 00 0.

Identifying Extra Practice 1. 2. 3. 4. 5. 6. 7. 8. 7. 00 0. 001 400 21004004. 00340 4. 56 X 104 1200. 2300. 01 3 1 1 8 3 3 4 6

Rounding For each of the following numbers, round to 3 sig figs 1. 5587

Rounding For each of the following numbers, round to 3 sig figs 1. 5587 m 1. 56 m 2. . 0037421 cm . 00374 cm 3. 1367 dg 1370 dg 4. 128, 522 k. L 129000 k. L 5. 1. 6683 106 mm 1. 67 X 106 mm

Rounding Extra Practice 1. 2. 3. 4. 5. 6. 7. 8. 4500 cs (1)

Rounding Extra Practice 1. 2. 3. 4. 5. 6. 7. 8. 4500 cs (1) 39020 dg (3) 0. 004530 mm (2) 0. 000897 kg (2) 450. 0069 g (5) 12890 hg (2) 0. 00045682 ms (1) 129. 95 k. L (4) 5000 cs 39000 dg 0. 0045 mm 0. 00090 kg 450. 01 g 13000 hg 0. 0005 ms 130. 0 k. L

S. F. Multiplication/Division Answer can only have the same quantity of sig figs as

S. F. Multiplication/Division Answer can only have the same quantity of sig figs as the least significant number used in the calculation Ex: ) 5. 33 X 1. 2 = 6. 396 * Answer can only have 2 S. F. ’s, so the answer must be rounded to 6. 4

Multiplication/Division Practice Complete the following: 850 g 38 g 22. 4 g 48. 3

Multiplication/Division Practice Complete the following: 850 g 38 g 22. 4 g 48. 3 mm / 12. 0 mm 4. 03 mm 3. 47 cm / 40 cm 0. 09 cm 428. 3 m. L 2. 4 m. L 1000 m. L

Addition & Subtraction 2 D. P. FOCUS ON DECIMAL PLACES!! The answer can only

Addition & Subtraction 2 D. P. FOCUS ON DECIMAL PLACES!! The answer can only have the same number of decimal places as the number used to obtain it with the fewest decimal places 35. 09 + 0. 2350 35. 3250 4 D. P. (Answer can only have 2 D. P) In sig figs= 35. 33

Problems 22. 3 cm + 3. 45 cm 25. 8 cm 7. 2 s

Problems 22. 3 cm + 3. 45 cm 25. 8 cm 7. 2 s + 15 s 22 s 6. 0 kg – 5. 34 kg 0. 7 kg 48 m – 0. 0025 m 48 m