May 7 2006 doc IEEE 802 15 0700

  • Slides: 39
Download presentation
May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Project: IEEE

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Project: IEEE P 802. 15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Tensor. Com Physical Layer Proposal] Date Submitted: [ 7 May, 2007] Source: [Ismail Lakkis] Company [Tensor. Com] Address [10875 Rancho Bernardo Rd #108, San Diego, CA, USA] Voice: [858 -676 -0200], FAX: [858 -676 -0300], E-Mail: [ ilakkis@tensorcom. com] Re: [This submission is in response to the TG 3 C call for Proposals (IEEE P 802. 15 -07 -0586 -02 -003 c)] Abstract: [This document describes the Tensor. Com physical layer proposal for IEEE 802. 15 TG 3 C. ] Purpose: [For considereation and discussion by IEEE 802. 15 TG 3 C. ] Notice: This document has been prepared to assist the IEEE P 802. 15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P 802. 15. Submission 1 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Tensor. Com Physical Layer Proposal Dual-Mode Single Carrier / OFDM Ismail Lakkis Tensor. Com 10875 Rancho Bernardo Rd, #108 San Diego, CA, 92127 May 7, 2007 Submission 2 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Outline •

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Outline • PHY key features • Channelization • Spreading codes • Common Preamble/Frame format • SC & OFDM • Common mode • Selected responses to the selection criteria • Advnatges of each mode • Summary Submission 3 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c PHY Key

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c PHY Key Features • Dual-mode SC (Single Carrier) / OFDM for different classes of devices • Low-complexity interoperability common mode for interoperability between different devices/networks • Unified common frame format enabling a single HW supporting SC / OFDM • Link Adaptation & Unequal Error Protection via low – complexity Structured Turbo LDPC / RS • Balanced Channelization with multiple XTAL support Submission 4 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Channelization Desired

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Channelization Desired Features • Use “free spectrums” of Japan, USA, Korea & EU • Support for 4 channels in the available spectrum • Channel Separation in the order of 2 GHz • Single integer PLL that generates all necessary frequencies using direct synthesis • Support of multiple PLL architectures (Direct conversion, double conversion) • High Frequency Dividers should be in power of 2 : low-frequency dividers can be programmable • Support of multiple crystals including at least one cell crystal & one high frequency crystal Submission 5 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Channelization Channel

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Channelization Channel Number Low Freq. (GHz) Center Freq. (GHz) High Freq. (GHz) 3 d. B BW (MHz) Roll-Off Factor 1 57. 13920 58. 24512 59. 35104 1720. 32 0. 286 2 59. 35104 60. 45696 61. 56288 1720. 32 0. 286 3 61. 56288 62. 66880 63. 77472 1720. 32 0. 286 4 63. 77472 64. 88064 65. 98656 1720. 32 0. 286 2211. 84 MHz 1720. 32 MHz 139 MHz 1 57 • • 13 MHz 1228. 8 MHz 58 2 59 60 3 61 62 4 63 64 65 66 f. GHz Support Cell phone XTAL: 38. 4 MHz & Other High frequency XTALs: 30. 72, 46. 08 MHz, … Very good balance between margins to 57/66 GHz & Good roll-off factor Supports Multiple PLL Architectures even with the Cell phone XTAL Dual PLL: High frequency PLL that generates carrier frequencies Low frequency PLL that generates the ADC/DAC & ASIC frequencies Submission 6 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Channelization: PLL

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Channelization: PLL Reference Diagram XTAL Oscillator ÷ R 1 f. X Phase Detector LPF f. M ÷M ADC/DAC options: 1720. 32 MHz 2580. 48 MHz 3440. 64 MHz ÷ R 2 Phase Detector VCO LPF f. S fc ×P ÷Q ÷N Example: f. ADC = 3440. 64 MHz VCO ÷ 16 x 7 ÷ 64 x 7 fc (GHz) 58. 24512 60. 45696 62. 66880 64. 88064 f. X (MHz) 7. 68 7. 68 30. 72 Submission fs (GHz) 14. 56128 15. 11424 15. 66720 16. 22016 19. 41504 20. 15232 20. 88960 21. 62688 14. 56128 15. 11424 15. 66720 16. 22016 f. M (MHz) 696. 72 629. 76 652. 80 675. 84 3640. 32 3778. 56 3916. 80 4055. 04 R 1 5 5 5 5 1 1 7 N 3 3 1 1 1 1 M 79 82 85 88 P 4 4 3 3 4 4 Q 8 8 32 32 4 4 R 2 5 5 5 5 1 1 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Spreading Codes:

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Spreading Codes: Desired Features • Quasi-perfect code: Low SLL (Side Lobe Level) and wide ZCZ (Zero Correlation Zone) for improved Detection • Perfect code for channel estimation, i. e. zero SLL • Binary codes (1 bit DAC versus multi-bit DAC) • Zero-mean codes for improved DC offset cancellation • Selected code should support a parallel Low complexity matched filter architecture • Maximum code length of 128 for multiple XTALs support (up to 50 ppm, ± 25 ppm @ Tx/Rx). • Should support SC & OFDM Submission 8 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Spreading Codes

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Spreading Codes • Golay complementary codes of various length N (a. N , b. N) are the spreading codes of choice • Each code has a low SLL and a wide ZCZ • The combination of their periodic & aperiodic autocorrelation provides a perfect code • Only 1 bit DAC & 1 bit ADC • Admit a very low-complexity highly parallelizable architecture • Key enabler for a low complexity synchronization, channel estimation & above all a common mode engine Submission 9 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Spreading codes

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Spreading codes input DD(0) + - DD(1) + - + + • DD(M-1) - + + Each Delay vector D and weight vector W specify a pair of complementary Golay codes • Highly efficient Golay matched filter with only 14 adders for a length 128 code (“Budisin”) • It provides simultaneous matched filtering with the two complementary codes at once. • Enables same preamble for SC, OFDM & interoperability common mode Submission + 10 Matlab Code function [a, b] = golay. Sub(M, N, D, W); a = [1 zeros(1, N-1)]; b = a; for m=1: M, ii = mod([0: N-1]-D(m), N); an = W(m)*a + b(ii+(1)); bn = W(m)*a - b(ii+(1)); a = an; b = bn; end; return; Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Spreading codes:

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Spreading codes: Preamble • • D = [64 32 8 2 16 1 4]; W = [++++-++] a = [05 C 99 C 5005369 CAFFA 3663 AF 05369 CAF] b = [F 5396 CA 0 F 5 C 66 C 5 F 0 AC 6935 FF 5 C 66 C 5 F] Submission 11 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Spreading Codes:

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Spreading Codes: Common Mode • • BPSK modulated data with code length 64 An extra bit per code can be obtained by selecting code a or code b “ 00” transmit +a 64 ; “ 01” transmit –a 64 “ 10” transmit +b 64; “ 11” transmit –b 64 Parameters • • D = [16 8 32 1 2 4] W = [+-+-++] a = [DE 21212174748 B 74]; b = [2 ED 1 D 1 D 184847 B 84]; • • Max SLL = 8 Rms SLL = 4. 5 Submission 12 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Short Spreading

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Short Spreading Codes dn Spread Data Out Serial Data In @ rate R sn @ chip Rate xn D xn-1 [x-1 x-2 … x-15] = [xx 11 1111] Spreader seed ID = [0 0] or [0 1] or [1 0] or [1 1] D D xn-14 D xn-15 • For low spreading code length (8 and below), there are no good codes. • Use a varying spreading code generated by an LFSR – SC time spreading and – OFDM frequency spreading matlab code function [data. Out] = tc. Spreader(data. In, spreader. Seed. Id, Fast) shift. Register = [spreader. Seed. Id ones(1, 13)]; for k = 0: length(data. In) -1, feedback = xor( shift. Register(13+(1)) , shift. Register(14+(1)) ); data. Out(k+(1)) = mod(data. In(k+(1))+feedback , 2); shift. Register = [feedback shift. Register([0: 13]+(1))]; end; return; Submission 13 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Preamble Structure

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Preamble Structure Long: Tpreamble = 2. 976 ms Short: Tpreamble = 1. 042 ms PLCP Preamble PLCP Header Packet/Frame Sync Sequence (Long Preamble: 32 Codes, Short Preamble: 6 Codes) PSDU SFD Start Frame Delimiter CES Channel Estimation Sequence 32 96 a 128 -a 128 a. CP a 256 a. CP b 256 b. CP -a 128 b 128 Maximum possible code length is 128 due to frequency offset up to 3 MHz. • • • -b 128 For a channel of length 128 chips, a code length of 256 is needed to solve time ambiguity, i. e. start and end of channel Long robust preamble for far reach; Short low-overhead preamble for HDR CES filed for perfect multipath estimation up to 150 ns For Sectored antennas / Beamforming, repeat sync sequence in each direction Golay sequences for all fields for low complexity and HW reuse Submission 14 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c PLCP Header

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c PLCP Header Length 16 b Rate 4 b PHY Header 4 octets PLCP Preamble Type 1 b Aggregation 1 b MAC Header 10 octets #sub. Frames 4 b HCS 2 octets Scrambler Seed 2 b Sectorized /Beamforming 4 b CP/UW mode 3 b Reserved 5 b RS(N, K) Parity Bits 8 octets PLCP Header PSDU Long: THDR = 3. 72 ms Short: THDR = 0. 465 ms Long: Rate = 52 Mbps Short: Rate = 417 Mbps • Robust Common mode SC/OFDM Long Header spread by a pair of Golay codes & transmitted at the LDR of 52 Mbps • Robust Short low-overhead mode specific header spread by a length 4 code (in time or frequency) transmitted at a MDR of 417 Mbps • Header is further protected by a systematic RS(255, 247) Submission 15 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Unified Frame

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Unified Frame Format 64 chips ~ 37 ms Common mode ±a 64 ±b 64 OFDM mode 512 chips ~ 300 ms CP OFDM Data Block CP Variable length: 0, 16, 32, 64 for SC & 16, 32, 64, & 128 for OFDM SC modes 256 chips ~ 150 ms a. M SC Data Burst a. M 32, 64, 128, or 256 Short CES Data Slot PLCP Preamble Submission Short CES Data Slot PLCP Header Payload 16 Data Slot FCS Pad Bits Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Unified Frame

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Unified Frame Format: HDR • A short CES field is transmitted periodically to reacquire the channel in both SC & OFDM • Variable length Golay codes are used for this field; • Preamble HW is reused during re-acquisition no extra cost • Mode specific frequency/timing tracking – Pilot tones for OFDM – CP Known Golay codes for SC • Highly complex channel tracking is no longer required • Channel tracking of large delay spreads would require a very dense pilot overhead in OFDM • The OFDM FFT(512) engine can be implemented as 2 small FFT(256) engines allowing HW reuse in SC mode with FDE (Frequency Domain Equalization) which requires FFT(256) than IFF(256). Submission 17 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Frame Format:

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Frame Format: SC • The modulation of choice for low complexity low power devices • Support for 2 classes of devices: – Class I: Low-power, low-complexity Constant Envelope mode: limited p/2 BPSK with data rates 50 Mbps-1. 3 Gbps – Class II: Quasi-constant envelope (BPSK, QPSK, & 8 PSK) with data rates up to 4 Gbps • Medium size FFT(256) & i. FFT(256) for FDE is enough for all environments • Known Golay code of variable length will serve as CP. This puts the CP at works instead of being a Waste. • The Golay CP will be used for timing, frequency and channel tracking if desired. • Pilot CES are used to re-acquire the channel Submission 18 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Frame Format:

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Frame Format: OFDM • The modulation of choice for HDR (16 -QAM and above), • Data rates up to 5. 3 Gbps • Allows future data rates extension without RF HW change • FFT size of 512 allows operation in extremely harsh environments with very large delay spread • Periodic pilot would alleviate the channel tracking task and reduces the sync engine tremendously • SC with 16 -QAM presents no advantages over OFDM • We need both SC & OFDM for different applications! Submission 19 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Frame Format:

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Frame Format: Common Mode • Common mode: necessary for interoperability between different devices & different networks • It requires no additional circuitry to that used during preamble detection; it comes for free! • Very low complexity with a single multiply and add (in serial implementation) • Requires only Reed Solomon Code, already needed for the header! Submission 20 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c FEC: Reed

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c FEC: Reed Solomon X g 1 g 0 r 0 matlab code data = round(rand(8, 239)) data = (2. ^[0: 7])*data parity = rsenc(gf(data, 8), 255, 239); parity = parity(: , end-15: end); parity = reshape(de 2 bi(parity, 8)', 1, 128); code = [data parity]; g 2 r 1 g 15 g 3 r 2 Y r 3 Message block Input: m 0, m 1, m 2, r 15 r 14 X … , m 238 Y Last to enter encoder First out from encoder First to enter encoder Last out from encoder Code Word Output: m 238, … , m 2 , m 1 , m 0, r 15, …, r 0 • Systematic Encoding for an RS(255, 238) over GF(28) – Primitive polynomial: P(z) = z 8 + z 4 + z 3 + z 2 + 1 – Root z = 00000010 – Generator polynomial: g(x) = ∏i=1: 16(x-zi) Submission 21 Ismail Lakkis, Tensor. Com X Y

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c STLDPC •

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c STLDPC • Supports rate ½, ¾, and 7/8 • Very low complexity systematic encoder • Low complexity highly parallelizable decoder • Throughput matched to that of RS • 1 RS and 1 LDPC Decoder engine is needed for Class I devices • Throughput of 1720 Mbps with Master clock of 215 MHz (BW/8) and 64 iterations Submission Rate 1/2 3/4 7/8 KK 288 432 504 NN 576 576 22 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c STLDPC •

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c STLDPC • Parity check matrix H is specified by an exponent matrix E, i. e. H = JE • Matrix J is the cyclic shift of the 18 x 18 Identity matrix, i. e. • J = 0; J 0 = I; J 18 = I E 78: Rate 7/8 11 3 6 13 15 10 13 15 17 9 2 16 5 11 3 14 17 7 6 16 0 0 8 6 13 10 10 9 17 13 11 3 6 15 15 10 13 16 17 9 2 14 5 11 14 16 17 7 6 6 0 0 8 9 13 10 10 11 17 6 13 11 3 13 15 15 10 2 16 17 9 3 14 5 11 6 16 17 7 8 6 0 0 10 9 13 10 1 11 17 3 6 13 11 10 13 15 15 9 2 16 17 11 3 14 5 7 6 16 17 0 8 6 0 10 10 9 13 0 1 11 17 0 1 E 34: Rate 3/4 11 3 15 6 11 3 13 11 6 13 13 16 10 15 17 2 15 13 16 9 17 2 3 13 15 16 9 Submission 2 17 3 13 15 9 16 11 17 7 14 17 3 16 7 16 6 11 17 14 16 23 6 0 8 8 0 0 13 0 0 6 14 8 6 7 5 3 0 6 11 5 10 2 17 14 15 15 11 5 10 10 5 3 15 11 6 9 6 13 3 13 10 9 10 17 11 13 10 9 6 0 8 0 6 9 13 10 10 9 10 1 11 13 10 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c STLDPC E

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c STLDPC E 12: Rate 1/2 3 15 16 11 13 6 9 10 15 10 13 15 17 6 13 11 10 13 Submission 17 15 2 14 1 11 8 13 6 0 17 10 0 16 24 9 0 6 0 10 7 3 11 13 0 17 17 10 6 5 9 1 10 16 16 0 9 8 6 11 13 6 7 14 15 11 11 2 3 17 0 5 9 6 6 1 10 0 16 16 13 0 7 14 10 8 3 2 6 16 11 0 9 17 17 15 11 14 9 13 0 6 5 13 3 7 2 16 11 13 11 8 3 15 6 17 17 13 3 5 9 0 1 10 17 10 11 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c SC Parameters

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c SC Parameters Chip Spreading Data Rate Duration Modulation Block CP Length LDPC RS Rate Device MHz ns Scheme Length (chips) Rate Mbps Class 1720. 32 0. 581 8 PSK 256 16 1 0. 875 0. 937 3967. 962 II Mode 1 1720. 32 0. 581 QPSK 256 16 1 0. 875 0. 937 2645. 308 II Mode 2 1720. 32 0. 581 QPSK 256 16 1 0. 750 0. 937 2267. 407 II 1720. 32 0. 581 QPSK 256 16 1 0. 500 0. 937 1511. 605 II 1720. 32 0. 581 QPSK 256 16 2 0. 500 0. 937 755. 802 II 1720. 32 0. 581 QPSK 256 16 4 0. 500 0. 937 377. 901 II 1720. 32 0. 581 QPSK 256 16 8 0. 500 0. 937 283. 426 II 1720. 32 0. 581 BPSK 256 16 1 0. 875 0. 937 1322. 654 I 1720. 32 0. 581 BPSK 256 16 1 0. 500 0. 937 755. 802 I 1720. 32 0. 581 BPSK 256 16 2 0. 750 0. 937 566. 852 I 1720. 32 0. 581 BPSK 256 16 2 0. 500 0. 937 377. 901 I 1720. 32 0. 581 BPSK 256 16 4 0. 500 0. 937 188. 951 I 1720. 32 0. 581 BPSK 256 16 8 0. 500 0. 937 94. 475 I 1720. 32 0. 581 BPSK/Ortho 64 0 64 1. 000 0. 969 52. 073 I Submission 25 Mode 3 Mode 4 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c OFDM Parameters

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c OFDM Parameters Chip Spreading Data Rate Duration Modulation Block CP # Info Length LDPC RS Rate Device MHz ns Scheme Length Tones (chips) Rate Mbps Class 1720. 32 0. 581 16 QAM 512 16 495 1 0. 875 0. 937 5290. 616 II 1720. 32 0. 581 16 QAM 512 16 495 1 0. 750 0. 937 4534. 814 II 1720. 32 0. 581 QPSK 512 16 495 1 0. 875 0. 937 2645. 308 II 1720. 32 0. 581 QPSK 512 16 495 1 0. 750 0. 937 2267. 407 II 1720. 32 0. 581 QPSK 512 16 495 1 0. 500 0. 937 1511. 605 II 1720. 32 0. 581 QPSK 512 16 495 2 0. 500 0. 937 755. 802 II 1720. 32 0. 581 QPSK 512 16 495 4 0. 500 0. 937 377. 901 II 1720. 32 0. 581 QPSK 512 16 495 8 0. 500 0. 937 188. 951 II 1720. 32 0. 581 BPSK 512 16 495 1 0. 875 0. 937 1322. 654 I 1720. 32 0. 581 BPSK 512 16 495 1 0. 500 0. 937 755. 802 I 1720. 32 0. 581 BPSK 512 16 495 2 0. 750 0. 937 566. 852 I 1720. 32 0. 581 BPSK 512 16 495 2 0. 500 0. 937 377. 901 I 1720. 32 0. 581 BPSK 512 16 495 4 0. 500 0. 937 188. 951 I 1720. 32 0. 581 BPSK 512 16 495 8 0. 500 0. 937 94. 475 I 1720. 32 0. 581 BPSK/Ortho 64 0 495 64 1. 000 0. 969 201. 378 I Submission 26 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Simulation Results

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Simulation Results Submission 27 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Simulation Assumptions

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Simulation Assumptions • Channel Bandwidth = 1720. 32 MHz • AWGN, CM 13, CM 23, CM 31 (Golden Set) • Omnidirectional antennas at both ends • 50 ppm XTAL (± 25 ppm @ each side) • Simulation includes – – – Submission Coarse/fine frequency acquisiton & tracking Channel estimation Frequency domain MMSE Equalizer Soft bit generation TLDPC & RS decoding 28 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Long Preamble

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Long Preamble Miss Detection & False Alarm Submission 29 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Simulation Results:

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Simulation Results: AWGN Submission 30 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Simulation Results:

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Simulation Results: CM 13 (CP=0) Submission 31 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Simulation Results:

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Simulation Results: CM 31 (CP=64) Submission 32 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Simulation Results:

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Simulation Results: CM 23 (CP=64) Submission 33 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Link Budget:

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Link Budget: AWGN (8%PER) Submission 34 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Link Budget:

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Link Budget: CM 31 (8%PER) Submission 35 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c PHY-SAP Throughput

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c PHY-SAP Throughput • Assumptions: – MPDU (MAC frame body + FCS) length = 16384 Octets – SIFS = 2. 5 ms – MIFS = 0. 5 ms MPDU Length Throughput @ 756 Mbps Throughput @ 1512 Mbps Throughput @ 2605 Mbps Throughput @ 3968 Mbps 16384 586 1172 2020 3077 Submission 36 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Aggregation Mode

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Aggregation Mode MPDU-1 MPDU-2 MPDU-M Subframe N CRC-2 Subframe 2 CRC-2 Subframe 1 CRC-1 MAC & PHY Headers Preamble SIFS Block ACK (corresponding To the N subframes) • PHY aggregation mode is highly efficient, minimizes the memory requirement at the device and is compliant with IEEE 802. 15. 3 b MAC • • MAC should support very lengthy MSDUs (and consequently very long MPDUs) or aggregated MPDUs, ; PHY will fragment the frame into subframes, protect each subframe with its own CRC and allow retransmission of a subframe rather than the entire frame. • The number of subframes can be negotiated between different devices. Once these parameters are negotiated they stay the same during one session. This reduces the overhead and these parameters need not be transmitted every frame or before each subframe. • If errors occur at the receiving device, the receiving device will request from the transmitting device the retransmission of only those subframes in error and not the entire MPDU. This will increase the overall efficiency and capacity of the system. Submission 37 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Summary •

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c Summary • Dual-mode SC (Single Carrier) / OFDM for different classes of devices • SC is the mode of choice for low complexity medium data rate • OFDM is the modulation of choice of very high data rate • Low-complexity interoperability common mode for interoperability between different devices/networks • Unified common frame format enabling a single HW supporting SC / OFDM • Link Adaptation & Unequal Error Protection via low –complexity Structured Turbo LDPC / RS • Balanced Channelization with multiple XTAL support Submission 38 Ismail Lakkis, Tensor. Com

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c 802. 15.

May 7, 2006 doc. : IEEE 802. 15 -0700 -00 -003 c 802. 15. 3 c Early Merge Work • Tensorcom has agreed to create a joint submission with COMPA • A Formal Joint submission would be made in July Meeting in San Francisco • Objectives: – “Best” Technical Solution – ONE solution – Fast Time To Market • We encourage participation by any party who can help us reach our goal Submission 39 Ismail Lakkis, Tensor. Com