May 2009 doc IEEE 802 15 09 0278

  • Slides: 18
Download presentation
May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g Project: IEEE

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g Project: IEEE P 802. 15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: GFSK PHY proposal for Smart Utility Networks Date Submitted: May 10, 2009 Source: Henk de Ruijter, Ping Xiong and Péter Onódy Silicon Laboratories Inc. Contact: Henk de Ruijter, Silicon Laboratories Inc. Voice: +1 650 623 9155 , E-Mail: hendricus. deruijter@silabs. com Re: TG 4 g Call for proposals Abstract: PHY proposal towards TG 4 g Purpose: PHY proposal for the TG 4 g PHY amendment Notice: This document has been prepared to assist the IEEE P 802. 15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P 802. 15. Submission Slide 1 1 Henk de Ruijter

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g Overview •

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g Overview • • Main PHY parameters Why GFSK? USA specifics EU specifics Japan specifics China specifics Frequency tolerance Submission Slide 2 2 Henk de Ruijter

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g Main PHY

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g Main PHY parameters • • Modulation type: GFSK Modulation index: 0. 75 BT factor: 0. 5 Data rate: 40 and 100 kbps depending on local regulations (single data rate per region) • Data whitening: PN 9 according to 802. 15. 4 d • 64 bit preamble supporting Antenna Diversity • 16 and 32 bit CRC depending on payload length Submission Slide 3 3 Henk de Ruijter

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g Why GFSK?

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g Why GFSK? • Lower adjacent channel emission than FSK complying to local regulations • No linear amplifier needed as appose to BPSK/OQPSK • Low complexity in the modem serving low cost endpoints. • Proven technology for FHSS regulations • Proven technology for Meter reading Submission Slide 4 4 Henk de Ruijter

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g Data whitening

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g Data whitening and Modulation • Same as 15. 4 d[5] : Submission Slide 5 5 Henk de Ruijter

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g Data whitening

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g Data whitening same as [5] 15. 4 d • Seed = “ 11111” • For details see [5] Submission Slide 6 6 Henk de Ruijter

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g PHY Packet

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g PHY Packet Preamble 64 bit SFD 16 bit PHR 8/16 bit PSDU max: 32767 octets • 64 bit preamble to support Antenna Diversity = 16 x Ah • 16 bit SFD to reduce false synchronization = 2 DD 4 h • PHR = 8 or 16 bit to support long payloads – LSB of PHR controls PHR length: “ 0” = 8 bit length, “ 1” = 16 bit length • CRC = 32 bits to support long payloads – LSB of PHR controls CRC type: “ 0” = CRC 16, “ 1” = CRC 32 • When channel hoping is used: one PHY Packet per hop (slow channel hopping. Submission Slide 7 7 Henk de Ruijter

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g CRC •

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g CRC • CRC depends on PSDU length – Derived from Frame Length field (PHR) • 16 bits CRC up to 127 Octets (802. 15. 4) • 32 bits CRC for more than 127 Octets (max: 32767 Octets) – Supporting long packets • CRC 16 (ITU-T) = 802. 15. 4 b • CRC 32 (IEEE 802. 3 -2005 section 1) polynomial: – x 32+x 26+x 23+x 22+x 16+x 12+x 11+x 10+x 8+x 7+x 5+x 4+x 2+x+1 – Seed: FFFF Submission Slide 8 8 Henk de Ruijter

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g PSD at

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g PSD at 100 kbps BW 20 d. B = 112 k. Hz Submission Slide 9 9 Henk de Ruijter

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g PSD at

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g PSD at 40 kbps BW 20 d. B = 44. 8 k. Hz Submission Slide 10 10 Henk de Ruijter

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g Per Region:

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g Per Region: Band [MHz] Region USA FCC part 15 [4] Europe ETSI EN 300 220 [2] Japan ARIB STD T 96 [3] 902 -928 Pmax [d. Bm] 30 Rb [kbps] 100 Channel spacing [k. Hz] 300 Lowest freq [k. Hz] 902, 300 Highest freq [k. Hz] Total # of FHSS/A channels FA 927, 500 85 slow channel hopping 863 -870 14 40 100 863, 300 869, 000 52 slow channel hopping 950 -956 0 & 10 100 400 951. 100 955, 500 11 AFA 99 slow channel hopping China [6] 470 -510 Submission 17 100 400 Slide 11 11 470, 400 509, 600 Henk de Ruijter

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g Adjacent Channel

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g Adjacent Channel Power Submission Channel ACP Spacing (Bw = 2 Rb) [d. Bc] [k. Hz] Region Rb [k. Hz] USA 100 300 -76 Europe 40 100 -55 Japan China 100 400 -110 Slide 12 12 Henk de Ruijter

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g FCC part

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g FCC part [4] 15. 247 • For frequency hopping systems operating in the 902 -928 MHz band: if the 20 d. B bandwidth of the hopping channel is less than 250 k. Hz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0. 4 seconds within a 20 second period; • Max peak conducted output power for frequency hopping systems operating in the 902 -928 MHz band is 1 Watt for systems employing at least 50 hopping channels. Submission Slide 13 13 Henk de Ruijter

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g EU 868

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g EU 868 MHz Band (non-specific SRD)[1, 2] Submission Slide 14 14 Henk de Ruijter

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g Constrains FHSS

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g Constrains FHSS in “g” Band • • • Sub-bands for alarms are excluded: Max channel spacing = 100 k. Hz Minimum number of channels = 47 Maximum emission at sub-band edges is -36 d. Bm in 100 k. Hz Max duty cycle = 0. 1% – NOTE: The duty cycle applies to the entire transmission (not at each hopping channel). Max dwell time per channel = 400 ms The maximum return time to a hopping channel shall be equal or less than the product of 4 x dwell and the number of hopping channels and must not exceed 20 s. Each channel of the hopping sequence shall be occupied at least once during a period not exceeding the product of 4 x dwell time and the number of hopping channels. In case of LBT being used for FHSS, this function shall be used at each hop channel. Submission Slide 15 15 Henk de Ruijter

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g Channel plan

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g Channel plan for EU: ch 1 863. 3 ch 14 864. 6 ch 27 865. 9 ch 40 867. 2 868. 5 ch 2 863. 4 ch 15 864. 7 ch 28 866. 0 ch 41 867. 3 868. 6 ch 3 863. 5 ch 16 864. 8 ch 29 866. 1 ch 42 867. 4 868. 7 ch 4 863. 6 ch 17 864. 9 ch 30 866. 2 ch 43 867. 5 868. 8 ch 5 863. 7 ch 18 865. 0 ch 31 866. 3 ch 44 867. 6 868. 9 ch 6 863. 8 ch 19 865. 1 ch 32 866. 4 ch 45 867. 7 ch 7 863. 9 ch 20 865. 2 ch 33 866. 5 ch 46 867. 8 869. 1 ch 8 864. 0 ch 21 865. 3 ch 34 866. 6 ch 47 867. 9 869. 2 ch 9 864. 1 ch 22 865. 4 ch 35 866. 7 ch 48 868. 0 869. 3 ch 10 864. 2 ch 23 865. 5 ch 36 866. 8 ch 49 868. 1 869. 4 ch 11 864. 3 ch 24 865. 6 ch 37 866. 9 ch 50 868. 2 869. 5 ch 12 864. 4 ch 25 865. 7 ch 38 867. 0 ch 51 868. 3 869. 6 ch 13 864. 5 ch 26 865. 8 ch 39 867. 1 868. 4 869. 7 ch 52 869. 0 Note: Sub-bands for Alarm are excluded (gray frequencies) Submission Slide 16 16 Henk de Ruijter

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g China [6]

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g China [6] (470 -510 MHz) : • When TX on time is no more than 5 sec then this band can be used for civilian meter reading. • ERP max = 50 m. W • Max frequency tolerance 100 ppm • Spurious limit: -54 d. Bm in 100 k. Hz @ +/-2. 5 CHBW - Needs confirmation Submission Slide 17 17 Henk de Ruijter

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g References [1]

May 2009 doc. : IEEE 802. 15 -09 -0278 -01 -004 g References [1] ERC/REC 70 -03 - Version of February 28, 2009 [2] ETSI 300 220 - V 2. 2. 1 (2008 04) [3] ARIB STD T 96 - v 1. 0 June 6, 2008 [4] FCC Part 15 - July 10, 2008 [5] IEEE Std 802. 15. 4 d™-2009 (April 17, 2009) [6] Chinese technical requirements for low power (short distance) radio equipment (July 26, 2007) Submission Slide 18 18 Henk de Ruijter