May 2003 doc IEEE 802 15 03097 r

  • Slides: 77
Download presentation
May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Project: IEEE P 802.

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Project: IEEE P 802. 15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [CRL Consortium’s Soft-Spectrum proposal for IEEE 802. 15. 3 a] Date Submitted: [5 May, 2003] Source: [Ryuji Kohno, Honggang Zhang, Hiroyo Ogawa] Company [(1) Yokohama National University, (2) Communications Research Laboratory, (3) Communications Research Laboratory ] Connector’s Address [3 -4, Hikarino-oka, Yokosuka, 239 -0847, Japan] Voice: [+81 -468 -47 -5101], FAX: [+81 -468 -47 -5431], E-Mail: [ kohno@crl. go. jp, honggang@crl. go. jp, hogawa@crl. go. jp] Re: [IEEE P 802. 15 Alternative PHY Call For Proposals, IEEE P 802. 15 -02/327 r 7] Abstract: [Soft-Spectrum UWB transferring schemes with free-verse and geometric pulse waveform adaptation and shaping are proposed, which are suitable for co-existence, interference avoidance, matching with regulatory spectral mask, and high data rate. Our proposed Soft-Spectrum Adaptation (SSA) is able to be introduced in either single-band or mutiband implementations. Local sine template receiving scheme is also investigated for Soft-Spectrum UWB impulse radio. ] Purpose: [For investigating the characteristics of High Rate Alternative PHY standard in 802. 15 TG 3 a, based on Soft-Spectrum adaptation, pulse waveform shaping and local sine template receiving] Notice: This document has been prepared to assist the IEEE P 802. 15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P 802. 15. Submission 1 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 CRL Consortium’s Soft-Spectrum Proposal

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 CRL Consortium’s Soft-Spectrum Proposal for IEEE 802. 15. 3 a Ryuji KOHNO Honggang ZHANG , Hiroyo OGAWA Communications Research Laboratory (CRL) and CRL-UWB Consortium Submission 2 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 Submission doc. : IEEE 802. 15 -03/097 r 2 3 R. Kohno,

May, 2003 Submission doc. : IEEE 802. 15 -03/097 r 2 3 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Members of CRL Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Members of CRL Consortium Takahiro YAMAGUCHI Tasuku TESHIROGI Hideaki ISHIDA Advantest Corporation Anritsu Corporation CASIO Computer Co. , Ltd. Hiroyo OGAWA Communications Research Laboratory Communications Research Laboratory Fuji Electric Co. , Ltd. Tetsuya YASUI Toshiaki MATSUI Akifumi KASAMATSU Honggang ZHANG Tomohiro INAYAMA Toshiaki SAKANE Youichi ISO Yoshinori OHKAWA Masatoshi TAKADA Submission Fujitsu Limited Furukawa Electric Co. , Ltd. Hitachi Cable, Ltd. Hitachi Kokusai Electric Inc. 4 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Members of CRL Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Members of CRL Consortium (cont) Satoshi SUGINO Tetsushi IKEGAMI Matsushita Electric Works, Ltd. Meiji University Yoshiaki KURAISHI Makoto YOSHIKAWA Toru YOKOYAMA Yoshihito SHIMAZAKI Masami HAGIO Takehiko KOBAYASHI Kiyomichi ARAKI Jun-ichi TAKADA Hiroyuki NAGASAKA NEC Engineering, Ltd. NTT Advanced Technology Corporation Omron Corporation Oki Electric Industry Co. , Ltd. Oki Network LSI CO. , Ltd. Tokyo Denki University Tokyo Institute of Technology Samsung Yokohama Research Institute SANYO Electric Co. , Ltd. Yokohama National University Telecom Engineering Center Sumio HANAFUSA Ryuji KOHNO Eishin NAKAGAWA Submission 5 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Outline of Presentation Why

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Outline of Presentation Why Soft-Spectrum UWB for IEEE 802. 15. 3 a WPANs Soft-Spectrum UWB PHY system architecture Link budget and supported data rates Multiple access techniques and performance Coexistence and narrowband interference mitigation Multipath mitigation techniques and performance Implementation feasibility Summary Backup materials Submission 6 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Why Soft-Spectrum UWB for

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Why Soft-Spectrum UWB for IEEE 802. 15. 3 a WPANs? Ø Philosophy of Soft-Spectrum Adaptation (SSA) with flexible pulse waveform and frequency band design free-verse pulse waveform shaping geometrical pulse waveform shaping Ø Interference avoidance and co-existence for harmonized, global implementation SSA can flexibly adjust UWB signal spectrum so as to match with spectral restriction in transmission power, i. e. spectrum masks in both cases of single and multiple bands. Ø Scalable, adaptive performance improvement Ø Smooth system version-up similar to Software Defined Radio Submission 7 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Ø Considering the whole

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Ø Considering the whole frequency bands from DC to 15 GHz, in regard of the FCC Spectrum Mask Ø The maximum emission power is limited to – 80 d. Bm/MHz (whole bands) Ø Frequency efficiency is extremely worse What’s the solution? (I) Pulse domain (II) Spectrum domain What we want to do ? Ø Giving spectrum freedom Flexible spectrum design Ø Giving waveform freedom Flexible pulse waveform design Ø Giving system freedom Maintaining exchangeability with existing and coming UWB systems Submission 8 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Basic philosophy Soft-Spectrum Adaptation

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Basic philosophy Soft-Spectrum Adaptation Ø Pulse design corresponding to required bandwidths Ø Flexible and adaptive spectrum , even if regional spectral mask is changed Soft-Spectrum Adaptation Submission 9 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Basic Formulation Example of

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Basic Formulation Example of Pulse Generator B: bandwidth [f H ~f L] Feasible Solution: Pulse design satisfying Spectrum Mask Ø Divide (spread-and-shrink ) the whole bandwidth into several subbands Soft Spectrum (spectrum matching) Ø Pulse synthesis M-ary signaling N division Submission 10 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Pulse width of 10

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Pulse width of 10 ns Frequency characteristics Tread-off Pulse width of 3 ns Robustness to MAI Submission 11 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Soft-Spectrum UWB PHY System

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Soft-Spectrum UWB PHY System Architecture Submission 12 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Example of Soft-Spectrum UWB

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Example of Soft-Spectrum UWB Transmitter Block Diagram Soft-Spectrum Processing Bank UWB Antenna Data Base-band Data Procession Unit in Soft-Spectrum Pulse Waveform Generator Pulse Shaping Filter (BPF) Soft. Spectrum Keying (Modulator) Power Amplifier (1) AWGN Channel (2) Multi-path Fading Channel Control/Timing in (1010110…. ) Submission 13 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Example of Soft-Spectrum UWB

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Example of Soft-Spectrum UWB Receiver Block Diagram Soft-Spectrum Processing Bank Soft. Spectrum Template Generator BPF UWB Antenna LNA VGA Soft. Spectrum Pulse Multiplier Soft. Spectrum Pulse Integrator Soft-Spectrum Keying Demodulator Base-band Data Processing Unit Information Data Out (1010110…) Acquisition + Channel Estimation Submission 14 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Various Pulse Waveforms Generated

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Various Pulse Waveforms Generated by Soft-Spectrum Processing Bank (I) Free-Verse Soft-Spectrum Pulses (II) Geometrical Soft-Spectrum Pulses Submission 15 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 K-1 Free-Verse Soft-Spectrum Pulse

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 K-1 Free-Verse Soft-Spectrum Pulse K-2 Free-Verse Soft-Spectrum Pulse (Dual-cycle) (Note: several band notches happen) Submission 16 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 time frequency K-3 Free-Verse

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 time frequency K-3 Free-Verse Soft-Spectrum Pulse (Note: band notches clearly happen at 2. 4 and 5 GHz as well) Submission 17 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 K-4 Free-Verse Soft-Spectrum Pulse

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 K-4 Free-Verse Soft-Spectrum Pulse (Note: pulse waveform has more freedom) Submission 18 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 1 1 0. 8

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 1 1 0. 8 0. 6 0. 4 0. 2 0 0 -0. 2 -0. 4 -0. 6 -0. 4 -0. 8 -0. 6 Triangular-type envelope Exponential-type envelope 1 0. 8 0. 6 0. 4 0. 2 0 0 -0. 2 -0. 4 -0. 6 -0. 8 Cosine-type envelope Gaussian-type envelope Geometric Soft-Spectrum pulse waveforms with various envelopes Submission 19 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Soft-Spectrum UWB multi-band signals

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Soft-Spectrum UWB multi-band signals (Cosine-type envelope) 0 Example of band allocation in Soft-Spectrum multi-band Approach 1. 5 -2 -4 1 -6 Amplitude (d. B) Amplitude 0. 5 0 -8 -10 -12 -14 -0. 5 -16 -1 -18 -20 -1. 5 0 50 100 150 200 250 300 350 3 3. 5 4 4. 5 5 5. 5 6 Frequency(GHz) Time(Samples) Adaptive, controllable spread-and-shrink of frequency bandwidths is feasible, according to the actual interference environment and the spectrum requirements Soft-Spectrum adaptation philosophy as mentioned before Submission 20 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Spectrum overlapping and possible

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Spectrum overlapping and possible interference with WLAN (802. 11 a) Do not use overlapping frequency bandwidth causing possible interference Example of interference avoidance and co-existence using flexible geometric Soft-Spectrum pulse transmission Submission 21 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 1 0. 8 0.

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 1 0. 8 0. 6 0. 4 0. 2 Exchangeable 0 -0. 2 -0. 4 -0. 6 Free-Verse pulse Geometrical pulse Power Spectrum 5 GHz W-LAN Harmonized with each through 1 2 3 4 5 6 7 8 9 10 11 F Dual- or three-band Multi-band Soft-Spectrum Adaptation Submission 22 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Modulation, Supported Data Rate

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Modulation, Supported Data Rate and Link Budget Soft-Spectrum Keying Submission 23 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Soft-Spectrum Keying Modulation and

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Soft-Spectrum Keying Modulation and Coding Scheme • Modulation schemes (Inner-keying) : QPSK and BPSK • Modulation schemes (Outer-keying) : M-ary Pulse Shape and Sequence Modulation (PSSM) • Coding Schemes: Viterbi K=7, Rate ½, ¾ • Pulse Guard-Intervals defined to allow Improved multiple access Improved ISI mitigation Improved receiving energy capture Submission 24 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 000 001 010 •

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 000 001 010 • • • t 100 101 110 • • • t Soft-Spectrum Keying Transmit 2 bits by using BPSK/QPSK modulation in each Soft. Spectrum pulse (Inner-keying) Transmit other more bits by defining different Soft-Spectrum pulse shapes and sequences (Outer-keying) Submission 25 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 f 1 t 1~3

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 f 1 t 1~3 ns Pulse Time Guard Interval (adaptive) f 2 t f 3 t Submission Soft-Spectrum Keying Guard-Interval is used for mitigating multipath fading effects, improving multiple access performance, and inter symbol interference (ISI) 26 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Supported data rate of

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Supported data rate of Soft-Spectrum adaptation scheme (only Inner-keying, 5 modes) Mode Modulation (Innerkeying) Coding Rate Pulse Rate [Mpulse/sec] 1 QPSK 1 250 20 500 2 QPSK ¾ 250 20 375 3 QPSK ½ 250 20 250 4 QPSK ¾ 125 40 187. 5 5 QPSK ½ 125 40 125 Submission 27 Data Rate– 5 Soft. Spectrum modes example PRI [ns] [Mbs] R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Supported data rate of

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Supported data rate of Soft-Spectrum adaptation scheme (Inner-keying and Outerkeying) Un-coded Data Rate [Mbps] Coded data rate (R=3/4) Coded data rate (R=1/2) No. of Outerkeying bits 107. 3 80. 5 53. 6 6. 5 10 6. 5 110. 5 82. 8 55. 3 4. 5 4 13 214. 5 160. 8 107. 3 6. 5 10 13 224. 3 168. 2 112. 1 6. 5 5 19. 5 448. 5 336. 4 224. 3 15 8 19. 5 604. 5 453. 4 302. 3 15 16 19. 5 Submission 28 No. of Inner Symbol rate -keying bits R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Comparisons of Hard-Spectrum (Mono-Band)

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Comparisons of Hard-Spectrum (Mono-Band) and Soft-Spectrum (Soft-Band) impulse radio transmissions Hard-Spectrum Soft-Spectrum Duty Cycle (PRF) High Low Frequency Bands One Multiple sub-bands Processing Gain (per sub-band) Multiple pulses per bit One or more bits per pulse PRF (per sub-band) Raw bit rate*pulses per bit Raw bit rate/bits per pulse / No. of subbands Submission 29 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Link Budget of Soft-Spectrum

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Link Budget of Soft-Spectrum Adaptation Scheme Parameter Value Throughput (Rb) Average Tx power ( PT ) 110. 5 Mbps -7. 8 d. Bm 224. 3 Mbps -7. 8 d. Bm Tx antenna gain ( GT ) 0 d. Bi f c' = f min f max one of typical center frequencies of Soft-Spectrum lower sub-bands 3. 6 GHz ' Path loss at 1 meter ( L 1 = 20 log 10 ( 4 pf c / c) ) 43. 6 d. B c = 3 * 10 8 m/s Path loss at d m ( L 2 = 20 log 10 ( d ) ) Submission Rx antenna gain ( G R ) 20 d. B at d=10 12 d. B at d=4 meters 0 d. Bi Rx power ( PR = PT + G R - L 1 - L 2 (d. B)) -71. 4 d. Bm -63. 4 d. Bm Average noise power per bit ( N = -174 + 10 * log 10 ( Rb ) ) -93. 6 d. Bm -90. 5 d. Bm Rx Noise Figure Referred to the Antenna Terminal ( N F ) 7. 0 d. B Average noise power per bit ( PN = N + N F ) -86. 6 d. Bm -83. 5 d. Bm Minimum Eb/N 0 (S) 6. 5 d. B 7. 2 d. B Implementation Loss (I) 3 d. B Link Margin ( M = PR - PN - S - I ) 5. 7 d. B 9. 9 d. B Proposed Min. Rx Sensitivity Level -77. 1 d. Bm -73. 3 d. Bm 30 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 (I) Multiple Access Techniques

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 (I) Multiple Access Techniques and Performance (II) Coexistence and Narrowband Interference Mitigation Submission 31 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 B: Free-Verse pulse (K-1)

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 B: Free-Verse pulse (K-1) Transmitted data Frame/Slot 10000 bits 10 ns/8 Users 5, 10 TH Sequence Gold Sequence Modulation PPM (Asyn. ) 99% Bandwidth 6. 75 GHz Pulse width 3 ns (A)/0. 39 ns(B) Channel AWGN Comparisons of Multiple Access Performance Submission 32 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 (1) BER of Soft-Spectrum

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 (1) BER of Soft-Spectrum system while causing interference to other co-existing DS-SS system Data rate UWB: 3. 2 Mbps SS: 384 kbps Bandwidth UWB: 3. 2 GHz SS: 3. 4 MHz DS-SS chip rate: 3. 84 Mcps DS-SS carrier frequency ωc: 2 GHz UWB pulse time duration: 0. 7 ns Number of pulses per symbol Ns: 31 Pulse repetition time Tf: 10 ns DIR: -16. 66 d. B Submission (2) BER of Soft-Spectrum system while receiving interference from other co-existing DS-SS system Multi-user performance comparisons of the DS-SS and Soft-Spectrum systems 33 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 (1) BER of DS-SS

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 (1) BER of DS-SS system while Dualcycle UWB system co-exists (2) BER of Dual-cycle UWB system while DS-SS system co-exists Multi-user performance comparisons of the coexistence of the DS-SS and Soft-Spectrum systems (K-2 Free-Verse pulse) Submission 34 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 (1) BER of DS-SS

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 (1) BER of DS-SS system while K-3 Soft. Spectrum system causing interference (2) BER of K-3 Soft-Spectrum system while DS-SS system causing interference Multi-user performance comparisons of the coexistence of the DS-SS and Soft-Spectrum systems (K-3 Free-Verse pulse) Submission 35 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 (1) BER of DS-SS

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 (1) BER of DS-SS system while K-4 Soft. Spectrum system causing interference (2) BER of K-4 Soft-Spectrum system while DS-SS system causing interference Multi-user performance comparisons of the coexistence of the DS-SS and Soft-Spectrum systems (K-4 Free-Verse pulse) Submission 36 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Coexistence with Existing Narrowband

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Coexistence with Existing Narrowband System IEEE 802. 11 a is the strongest narrowband interferer Soft-Spectrum coexistence way – Do not use interfered bands for coexistence with IEEE 802. 11 a WLAN devices Channel allocation can be freely, dynamically assigned depending on channel monitoring results and regional regulations Submission 37 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Coexistence Strategies Soft-Spectrum coexistence

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Coexistence Strategies Soft-Spectrum coexistence – Pre-configure device (through software control) not to use a particular band, based on various geographic region and device usage – Allow device to detect presence of NBI and avoid – Device interoperability functions could specify detection requirements to ensure adequate control UWB power emitted into 802. 11 a bands and 4. 9 GHz WLAN band in Japan – Avoiding 5. 25 GHz (5. 8 GHz) band for lower (upper) UNII band coexistence – Avoiding 4. 7 GHz band (4. 975 GHz using frequency offset channels) Submission 38 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Soft-Spectrum Adaptation Scheme in

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Soft-Spectrum Adaptation Scheme in AWGN and Multipath Fading Environment Submission 39 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Soft-Spectrum Immunity in Multipath

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Soft-Spectrum Immunity in Multipath Fading Environment Decrease inter-pulse interference (ISI) by employing adaptive Guard-Interval Decrease multipath fading effects by choosing suitable Soft-Spectrum waveforms Use baseband Pre- and Post-Rake receiver based on designing suitable intra-pulse waveform Continuous channel measurements are good for changing multipath environment Submission 40 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Impulse response realizations 0.

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Impulse response realizations 0. 6 0. 4 0. 2 0 From transmitter -0. 2 -0. 4 TX RX -0. 6 -0. 8 0 50 100 150 200 250 Time (ns) Indoor multipath fading: Example of indoor UWB impulse radio signal propagation (IEEE 802. 15 SG 3 a S-V model: CM 1, CM 2, CM 3, CM 4) Submission 41 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Soft-Spectrum UWB transmitted signal

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Soft-Spectrum UWB transmitted signal 1 Amplitude 0. 5 0 -0. 5 -1 0 50 100 150 200 250 300 350 400 Time Soft-Spectrum UWB transmitted signal+AWGN 2 1. 5 Amplitude 1 0. 5 0 -0. 5 -1 -1. 5 -2 0 50 100 150 200 Time 250 Soft-Spectrum UWB transmitted signal (Gaussian-type envelope) Amplitude 1 0. 5 0 -0. 5 -1 0 50 100 150 200 250 300 350 400 Time Soft-Spectrum UWB transmitted signal+AWGN ( Gaussian-type envelope) 50 100 150 Amplitude 2 1. 5 1 0. 5 0 -0. 5 -1 -1. 5 -2 0 200 Time 250 300 350 400 Various geometrical Soft-Spectrum pulse sequences in AWGN channel Submission 42 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 BER vs. Eb/No performance

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 BER vs. Eb/No performance in the presence of AWGN (Receiver: 2 over-samples) Submission BER vs. Eb/No performance in the presence of AWGN (Receiver: 4 over-samples) 43 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Geometric Soft-Spectrum pulses Group

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Geometric Soft-Spectrum pulses Group Delay 1 1 0. 5 0 0 -0. 5 Group Delay 1 0. 5 0 -0. 5 Geometric Soft-Spectrum inter-pulse interference caused by multipath fading Submission 44 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 1 0. 8 0.

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 1 0. 8 0. 6 0. 4 0. 2 0 -0. 2 -0. 4 -0. 6 -0. 8 Inter-pulse interference effects of multipath fading on various geometric Soft-Spectrum pulse waveforms Submission 45 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 UWB multipath fading signal

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 UWB multipath fading signal 2 1. 5 1 1 0. 5 Amplitude 1. 5 0 -0. 5 -1 -1 -1. 5 -2 UWB multipath fading signal 2 0 100 200 300 400 500 Time 600 700 800 900 -2 1000 UWB multipath channel impulse response 1. 5 0 50 100 150 200 Time 250 300 350 400 UWB multipath fading signal+AWGN 3 2 1 Amplitude 1 0. 5 0 -1 -0. 5 -1 0 -2 -3 0 200 400 600 800 1000 Time 1200 1400 1600 1800 2000 0 50 100 150 200 Time 250 Geometrical Soft-Spectrum pulse sequences in multipath fading channel (Cosine-type pulse waveform) Submission 46 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Geometrical Soft-Spectrum receiving signal

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Geometrical Soft-Spectrum receiving signal re-sampling (Cosine-type envelope) 1. 5 Re-sampling 1 Amplitude 0. 5 0 -0. 5 -1 -1. 5 -2 -1. 5 -1 -0. 5 0 0. 5 1 1. 5 2 Time 100 samples Submission 47 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 1 Amplitude 0. 5

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 1 Amplitude 0. 5 0 -0. 5 -1 Timing off-set =0. 25, 0. 5, 1. 0, 1. 5 Submission 48 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 BER vs. Eb/No performance

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 BER vs. Eb/No performance in the presence of receiver timing off-set (AWGN channel) Submission BER vs. Eb/No performance in the presence of receiver timing off-set (multipath fading channel) 49 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 1 0. 5 0

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 1 0. 5 0 -0. 5 BPF C1(t) Tc Tc C2(t) C3(t) Tc CN(t) Soft-Spectrum Rake Receiver Multipath diversity for geometric Soft-Spectrum intra/inter pulse combining Submission 50 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Implementation Feasibility Soft-Spectrum adaptation

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Implementation Feasibility Soft-Spectrum adaptation scheme has many features designed to achieve low-complexity and low power consumption – Dynamic, non-overlapped timing • Shared Soft-Spectrum processing bank (pulse generator, ADC, and Soft-Spectrum correlator) – Reduced power consumption via adaptive duty cycle of Soft. Spectrum sub-band • Don’t necessarily require many continuously running PLLs – Reused circuits: exchangeable by software realizing smaller die area Many components in common with other UWB architectures – LNA, BPF/LPF, AGC, VGA, and digital processing unit Many possible transceiver implementations and following version -ups based on Software Defined Radio architecture Submission 51 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Self-Evaluation General Solution Criteria

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Self-Evaluation General Solution Criteria REF. IMPORTANCE LEVEL PROPOSER RESPONSE 3. 1 B 0 Interference And Susceptibility 3. 2. 2 A + Coexistence 3. 2. 3 A + Manufacturability 3. 3. 1 A + Time To Market 3. 3. 2 A 0 Regulatory Impact 3. 3. 3 A + Scalability (i. e. Payload Bit Rate/Data Throughput, Channelization – physical or coded, Complexity, Range, Frequencies of Operation, Bandwidth of Operation, Power Consumption) 3. 4 A + Location Awareness 3. 5 C 0 CRITERIA Unit Manufacturing Complexity (UMC) Signal Robustness Technical Feasibility Submission 52 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Self-Evaluation PHY Protocol Criteria

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Self-Evaluation PHY Protocol Criteria CRITERIA Size And Form Factor REF. IMPORTANCE LEVEL PROPOSER RESPONSE 5. 1 B 0 PHY-SAP Payload Bit Rate & Data Throughput Payload Bit Rate 5. 2. 1 A + Packet Overhead 5. 2. 2 A + PHY-SAP Throughput 5. 2. 3 A + Simultaneously Operating Piconets Signal Acquisition 5. 3 A + 5. 4 A + System Performance 5. 5 A + Link Budget 5. 6 A + Sensitivity 5. 7 A 0 Power Management Modes 5. 8 B + Power Consumption 5. 9 A + Antenna Practicality 5. 10 B 0 Submission 53 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Self-Evaluation MAC Protocol Enhancement

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Self-Evaluation MAC Protocol Enhancement Criteria CRITERIA MAC Enhancements And Modifications Submission REF. IMPORTANCE LEVEL PROPOSER RESPONSE 4. 1. C 0 54 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Single-Band Dual-Band 1960’s Mono-pulse

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Single-Band Dual-Band 1960’s Mono-pulse 1990’s Soft-Spectrum 2002 -02 -14 Pulse FCC 02 -48 Sequences UWB Report (TH-PPM) & Order Multi-Band Submission 55 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Summary (I) Ø We

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Summary (I) Ø We propose a Ultra Wideband impulse radio transferring scheme utilizing Soft-Spectrum Adaptation and free, dynamic pulse waveform shaping. Ø Soft-Spectrum Adaptation and free, dynamic pulse waveform shaping can satisfy the FCC Spectrum Mask and other regional regulation, and be applied to avoid possible interferences with other existing narrowband wireless systems. Submission 56 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Summary (II) Ø Scalable

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Summary (II) Ø Scalable and adaptive performance improvement can be achieved by utilizing the pulse waveform shaping even in multi-user and multipath fading environment. Ø Since R&D of UWB has still been in progress, a standardization should not restrict the progress by only choosing easiest current technology while leaving more flexibilities in signaling, modulation, etc. in UWB physical layer. Submission 57 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Back Materials Submission 58

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Back Materials Submission 58 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Local Sine Template Receiving

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Local Sine Template Receiving Scheme Ø We also propose a local sine template receiving scheme. Ø Simplified correlation scheme and immunity to multipath fading can be achieved. Ø Initial-phase control is needed. Submission 59 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Characteristics of proposed Local

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Characteristics of proposed Local Sine Template receiving Ø Utilizing local-generated sine template instead of conventional TH-PPM template-pulse Ø Simplified correlator circuits Low cost, low power consumption Ø Robustness to impulse radio multipath fading Ø Necessary to estimate and control local Initial -phase Submission 60 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Pulse sequences generation and

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Pulse sequences generation and modulation on transmitting side Submission 61 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Pulse sequences after Band

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Pulse sequences after Band Pass Filtering (BPF) on transmitting side Submission 62 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Received pulse sequences before

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Received pulse sequences before adding AWGN on receiving side Submission 63 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Received pulse sequences after

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Received pulse sequences after adding AWGN on receiving side Submission 64 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Received pulse sequences after

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Received pulse sequences after BPF and Mixer on receiving side (Correlation with local sine template) Submission 65 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Received pulse sequences after

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Received pulse sequences after Low Pass Filtering (LPF) on receiving side (demodulation and data out) Submission 66 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Effects of Initial-phase estimation

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Effects of Initial-phase estimation scheme (i. e. Initialphase=180 deg) Submission 67 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Effects of Initial-phase estimation

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Effects of Initial-phase estimation scheme (i. e. Initialphase=150 deg) Submission 68 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Effects of Initial-phase estimation

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Effects of Initial-phase estimation scheme (i. e. Initialphase=120 deg) Submission 69 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Effects of Initial-phase estimation

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Effects of Initial-phase estimation scheme (i. e. Initialphase=90 deg) Submission 70 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Effects of Initial-phase estimation

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Effects of Initial-phase estimation scheme (i. e. Initialphase=45 deg) Submission 71 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Effects of Initial-phase estimation

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Effects of Initial-phase estimation scheme (i. e. Initialphase=0 deg) Submission 72 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Qo. S (Quality-of-Service) Enhancement

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Qo. S (Quality-of-Service) Enhancement to IEEE 802. 15. 3 MAC Layer Submission 73 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 C Master or Hub

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 C Master or Hub B A Slave or Leaf node Proxy node or wireless Bridge Several neighbor piconets in UWB multiuser environment Submission 74 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Data link layer control:

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Data link layer control: identification and management of usable resource multi-hop link Source node one-hop direct link Destination node Multi-hop UWB WPAN with resource management, relaying and route discovering Submission 75 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Post-Rake Pre-Rake UWB RP

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 Post-Rake Pre-Rake UWB RP TX TX RX RX RP 10 m UWB multi-hop communications with Ad-hoc real-time relaying for multimedia data transfer (Multipath combining scheme is used by the real-time UWB Repeater) Submission 76 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 10 10 BER 10

May, 2003 doc. : IEEE 802. 15 -03/097 r 2 10 10 BER 10 10 0 BER in free space loss and AL (assumed loss: -10 d. B more power attenuation than free space loss) direct path only multipath channel without direct path between TX and RX using Rake on the RP but RP receives no direct path multipath channel in AL multipath channel without direct path between TX and RP in AL using Rake on the RP in AL but RP receives no direct path -1 -2 -3 -4 -5 -6 10 -20 -15 -10 -5 0 5 10 15 SNR[d. B] Performance improvement by using Multipath combining scheme at the real-time UWB Repeater Submission 77 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium