MATRIKS DAFTAR SLIDE JenisJenis Matriks Transpose Operasi Matriks



























- Slides: 27

MATRIKS

DAFTAR SLIDE Jenis-Jenis Matriks Transpose Operasi Matriks

DEFINISI MATRIKS : kumpulan bilangan yang disajikan secara teratur dalam baris dan kolom yang membentuk suatu persegi panjang, serta termuat diantara sepasang tanda kurung.

NOTASI MATRIKS q Nama matriks menggunakan huruf besar q Anggota-anggota matriks dapat berupa huruf kecil maupun angka q Digunakan kurung biasa atau kurung siku q Ordo matriks atau ukuran matriks merupakan banyaknya baris (garis horizontal) dan banyaknya kolom (garis vertikal) yang terdapat dalam matriks tersebut.

NOTASI MATRIKS q Jadi, suatu matriks yang mempunyai m baris dan n kolom disebut matriks berordo atau berukuran m x n. Notasi A = (aij) q Memudahkan menunjuk anggota suatu matriks A= Dengan i = 1, 2, . . . , m j = 1, 2, . . . , n

MATRIKS q Contoh : Matriks A merupakan matriks berordo 4 x 2 q Bilangan-bilangan yang terdapat dalam sebuah matriks dinamakan entri dalam matriks atau disebut juga elemen atau unsur.

NOTASI MATRIKS Kolom Baris Unsur Matriks berukuran m x n atau berorde m x n 7

MATRIKS BARIS DAN KOLOM q Matriks baris adalah matriks yang hanya mempunyai satu baris q Matriks kolom adalah matriks yang hanya mempunyai satu kolom.

JENIS –JENIS MATRIKS q Matriks bujursangkar berukuran n x n (persegi) adalah matriks yang q Matriks nol adalah matriks yang setiap entri atau elemennya adalah bilangan nol Sifat-sifat dari matriks nol : -A+0=A, jika ukuran matriks A = ukuran matriks 0 -A*0=0, begitu juga 0*A=0.

JENIS –JENIS MATRIKS q Matriks Diagonal adalah matriks persegi yang semua elemen diatas dan dibawah diagonalnya adalah nol. Dinotasikan sebagai D. Contoh : q Matriks Skalar adalah matriks diagonal yang semua elemen pada diagonalnya sama

JENIS –JENIS MATRIKS q Matriks Identitas adalah matriks skalar yang elemen-elemen pada diagonal utamanya bernilai 1. Sifat-sifat matriks identitas : A*I=A I*A=A q Matriks Segitiga Atas adalah matriks persegi yang elemen di bawah diagonal utamanya bernilai nol q Matriks Segitiga Bawah adalah matriks persegi yang elemen di atas diagonal utamanya bernilai nol

TRANSPOSE MATRIKS q Jika A adalah suatu matriks m x n, maka tranpose A dinyatakan oleh A dan didefinisikan dengan matriks n x m yang kolom pertamanya adalah baris pertama dari A, kolom keduanya adalah baris kedua dari A, demikian juga dengan kolom ketiga adalah baris ketiga dari A dan seterusnya. q Contoh : matriks A : berordo 2 x 3 transposenya : berordo 3 x 2

TRANSPOSE MATRIKS Beberapa Sifat Matriks Transpose :

TRANSPOSE MATRIKS Pembuktian aturan no 1 : TERBUKTI

TRANSPOSE MATRIKS Pembuktian aturan no 2 : TERBUKTI

MATRIKS A = B q Dua buah matriks A dan B dikatakan sama (A = B) apabila A dan B mempunyai jumlah baris dan kolom yang sama (berordo sama) dan semua unsur yang terkandung di dalamnya sama. q aij = bij dimana - aij = elemen matriks A dari baris i dan kolom j - bij = elemen matriks B dari baris i dan kolom j q A=B dan q A≠B dan

PENJUMLAHAN MATRIKS q Apabila A dan B merupakan dua matriks yang ukurannya sama, maka hasil penjumlahan (A + B) adalah matriks yang diperoleh dengan menambahkan bersama-sama entri yang seletak/bersesuaian dalam kedua matriks tersebut. q Matriks-matriks yang ordo/ukurannya berbeda tidak dapat ditambahkan. dan

PENJUMLAHAN MATRIKS q Contoh Soal

PENGURANGAN MATRIKS q A dan B adalah suatu dua matriks yang ukurannya sama, maka A-B adalah matriks yang diperoleh dengan mengurangkan bersama-sama entri yang seletak/bersesuaian dalam kedua matriks tersebut. q Matriks-matriks yang ordo/ukurannya berbeda tidak dapat dikurangkan. dan

PENGURANGAN MATRIKS q Contoh :

PERKALIAN MATRIKS DENGAN SKALAR q. Jika k adalah suatu bilangan skalar dan matriks A=(aij ) maka matriks k. A=(kaij ) adalah suatu matriks yang diperoleh dengan mengalikan semua elemen matriks A dengan k. q. Mengalikan matriks dengan skalar dapat dituliskan di depan atau dibelakang matriks. q[C]=k[A]=[A]k

PERKALIAN MATRIKS DENGAN SKALAR Sifat-sifat perkalian matriks dengan skalar : k(B+C) = k. B + k. C k(B-C) = k. B-k. C (k 1+k 2)C = k 1 C + k 2 C (k 1 -k 2)C = k 1 C – k 2 C (k 1. k 2)C = k 1(k 2 C)

PERKALIAN MATRIKS DENGAN SKALAR Contoh : dengan k = 2, maka K(A+B) = 2 A+2 B TERBUKTI

PERKALIAN MATRIKS DENGAN SKALAR Contoh : dengan k 1 = 2 dan k 2 = 3, maka (k 1+k 2)C = k 1. C + k 2. C TERBUKTI

PERKALIAN MATRIKS q Perkalian matriks dengan matriks pada umumnya tidak bersifat komutatif. q Syarat perkalian adalah jumlah banyaknya kolom pertama matriks sama dengan jumlah banyaknya baris matriks kedua. q Jika matriks A berukuran mxn dan matriks B berukuran nxp maka hasil dari perkalian A*B adalah suatu matriks C=(cij ) berukuran mxp dimana

PERKALIAN MATRIKS q Contoh :

PERKALIAN MATRIKS q Apabila A merupakan suatu matriks persegi, maka A² = A. A ; A³=A². A dan seterusnya q Apabila AB = BC maka tidak dapat disimpulkan bahwa A=C (tidak berlaku sifat penghapusan) q Apabila AB = AC belum tentu B = C q Apabila AB = 0 maka tidak dapat disimpulkan bahwa A=0 atau B=0 q Terdapat beberapa hukum perkalian matriks : 1. A(BC) = (AB)C 2. A(B+C) = AB+AC 3. (B+C)A = BA+CA 4. A(B-C)=AB-AC 5. (B-C)A = BA-CA 6. A(BC) = (a. B)C= B(a. C) 7. AI = IA = A
Basic dance steps in heel and toe polka
Matriks pangkat
Det a matriks
Determinan matriks
Penulisan daftar pustaka dari slide presentasi
Konsep sistem operasi manajemen operasi
Penjadwalan proses sistem operasi
Pengertian konsep set adalah
Fungsi sistem file
Contoh liabiliti semasa
Operasi matriks penjumlahan
Matriks identitas
How to factor binomials
Proc transpose sas ejemplos
Cache lab cmu
Transpose of inverse matrix
Transposition glasses prescription
Ethan bernstein quantum
Transpose symmetry
Transpose adalah
Openoffice calc transpose
Convolutional transpose
Optical cross transposition
Bluebit matrix calculator
Conjugate of a matrix
Reconstitue les phrases ci dessous
Transpose of inverse matrix
Define rectangular matrix