March 2003 doc IEEE 802 15 03151 r

  • Slides: 92
Download presentation
March 2003 doc. : IEEE 802. 15 -03/151 r 1 Project: IEEE P 802.

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Project: IEEE P 802. 15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [TG 3 a-Wisair-CFP-Presentation] Date Submitted: [3 March, 2003] Source: [Gadi Shor] Company: [Wisair] Address: [24 Raoul Wallenberg st. Ramat Hachayal, Tel-Aviv, ISRAEL] Voice: [+972 -3 -7676605] FAX: [+972 -3 -6477608], E-Mail: [gadi. shor@wisair. com] Re: [802. 15. 3 a Call for proposal] Abstract: [Wisair’s presentation for the P 802. 15. 3 a PHY standard] Purpose: [Response to WPAN-802. 15. 3 a Call for Proposals] Notice: This document has been prepared to assist the IEEE P 802. 15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P 802. 15. Submission 1 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Wisair’s Variable-Pulse-Rate Multi-Band PHY

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Wisair’s Variable-Pulse-Rate Multi-Band PHY layer Proposal for TG 3 a Gadi Shor, Yaron Knobel, David Yaish, Sorin Goldenberg, Amir Krause, Erez Wineberger, Rafi Zack, Benny Blumer, Zeev Rubin, David Meshulam, Amir Freund Wisair Submission 2 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Contents • • Targets

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Contents • • Targets Main Features Physical layer Implementation and Feasibility MAC enhancements Performance Self Evaluation Conclusions Submission 3 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Targets • Proposal for

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Targets • Proposal for high bit-rate Multi-Band PHY layer for 802. 15. 3 MAC • Support applications with wireless transmission of Audio/Video and High. Rate data communication • Allow cost effective, low power implementation on chip Submission 4 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Contents • • Targets

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Contents • • Targets Main Features Physical layer Implementation and Feasibility MAC enhancements Performance Self Evaluation Conclusions Submission 5 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Main Features • Variable-Pulse-Rate

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Main Features • Variable-Pulse-Rate Multi-band PHY • Flexible (use 1 ->14 sub-bands out of 30) Ø World-wide regulation Ø Co-existence with current and future systems Ø Interference mitigation • Scalable (Variable pulse repetition frequency) Ø 20 to 1000 Mbps Ø Reduced ADC sampling rate at lower Bit-rate Ø Power consumption vs. Bit-rate trade off • Support 802. 15. 3 MAC without modifications, only enhancements • Support all selection criteria Submission 6 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Contents • • Targets

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Contents • • Targets Main Features Physical layer Implementation and Feasibility MAC enhancements Performance Self Evaluation Conclusions Submission 7 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Variable-Pulse-Rate Multi-Band PHY layer

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Variable-Pulse-Rate Multi-Band PHY layer • • Sub-bands frequency plan Pulse shape Operation modes Variable-Pulse-Rate time-frequency interleaving sequences Submission 8 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Frequency Plan Consideration Points

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Frequency Plan Consideration Points Consideration points : • FCC mask Ø In band mask – 3. 1 -10. 6 GHz Ø Indoor FCC mask require 10 db attenuation at 3. 1 GHz rejection Ø Outdoor FCC mask require 20 db attenuation at 3. 1 GHz rejection • 802. 11 a Frequency range : Ø US & Canada: 5. 15 - 5. 350 GHz & 5. 725 - 5. 825 GHz Ø Japan: 4. 9 -5 GHz , 5. 15 - 5. 25 GHz Ø Europe: 5. 15 - 5. 35 GHz & 5. 47 - 5. 725 GHz Submission 9 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Multi-Band Frequency-Plan • Sub-bands

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Multi-Band Frequency-Plan • Sub-bands are spaced 470 MHz apart ØFor flexible co-existence and simplementation • Each sub band is generated by a pulse with 10 d. B bandwidth of ~520 MHz Ø Submission Supports FCC requirements 10 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Two overlapping frequency groups

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Two overlapping frequency groups (A, B) • A Second group overlap the first group 235 MHz aside Øenhance system flexibility with respect to co-existence, interference mitigation and multiple access Submission 11 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Upper and Lower Sub-Band

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Upper and Lower Sub-Band Sets • Each group is divided into lower (sub-bands 1 -8) and upper (sub-bands 9 -15) sets • Only 7 sub-bands are used in the lower set Ø One sub-band can be avoided for co-existence • The upper set is used in parallel to the lower set to increase the bit-rate Ø First generation support lower set Ø Next generation devices has backward compatibility Submission 12 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Signal spectrum: Group A

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Signal spectrum: Group A - Lower Set (ADS Simulation) • The sub-bands are divided into a lower set (lower 8 sub-bands) and an upper set (higher 7 subbands) Submission 13 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Co-existence ØCenter frequencies selected

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Co-existence ØCenter frequencies selected to allow elimination of one sub-band per region ØOnly 7 sub-bands are used in the lower set according to the region Submission 14 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Co-existence Ø Only 7

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Co-existence Ø Only 7 sub-bands out of 8 are used in the lower set according to the region Submission 15 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Co-existence (US) ØUS Co

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Co-existence (US) ØUS Co existence with 802. 11 a: avoid one of the Sub Channels: 4 a, 5 b, 6 b Submission 16 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Co-existence (US) Ø Submission

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Co-existence (US) Ø Submission Example: Avoid sub band 6 b 17 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Co-existence (Europe) ØEurope Co

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Co-existence (Europe) ØEurope Co existence with 802. 11 a: avoid one of the Sub Channels: 4 a, 5 b, 6 b Submission 18 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Co-existence (Europe) Ø Submission

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Co-existence (Europe) Ø Submission Example: Avoid sub band 5 a 19 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Co-existence (Japan) ØJapan Co

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Co-existence (Japan) ØJapan Co existence with 802. 11 a: avoid one of the Sub Channels: 4 a, 4 b Submission 20 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Co-existence (Japan) Ø Submission

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Co-existence (Japan) Ø Submission Example: Avoid sub band 4 a 21 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Variable-Pulse-Rate Multi-Band Modulation and

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Variable-Pulse-Rate Multi-Band Modulation and Coding Scheme • The waveform is generated by time interleaving of pulses from different frequency sub-bands • Modulation schemes: QPSK and BPSK • Coding Schemes: Viterbi K=7, Rate ½, ¾ • Three pulse repetition intervals supported to allow Ø Reduced ADC sampling rate for improved power consumption Ø Improved multiple access Ø Improved ISI mitigation Ø Energy collection Submission 22 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Variable-Pulse-Rate Multi-Band • Pulse

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Variable-Pulse-Rate Multi-Band • Pulse repetition interval per sub-band is longer than channel response Ø 28 n. Sec: 7 pulses ~3. 9 n. Sec each with 250 Mpps Ø 56 n. Sec: 7 pulses ~3. 9 n. Sec each with 125 Mpps Ø 84 n. Sec: 7 pulses ~3. 9 n. Sec each with 83. 3 Mpps Ø Reduce sampling rate for reduced bit rates Submission 23 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mpps signal example

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mpps signal example (ADS simulation) • Any number of sub-bands (N<=7) can be used Unused sub-bands are not transmitted • Example shows 4 sub-bands in use Submission 24 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Multi-band signal generation •

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Multi-band signal generation • Above 500 Mbps the upper band optional section (Gray section) may be used to allow up to 1000 Mbps Submission 25 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Pulse Shape Pulse shape

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Pulse Shape Pulse shape defines the envelope of the pulse 3. 9 n. Sec 4. 0 n. Sec Submission 26 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Operation Modes (7 bands

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Operation Modes (7 bands example) Mode Modulation Coding Rate Pulse Rate Sub[Mpulse/sec] Band PRI [nsec] Data Rate [Mbs] -7 bands example 1 QPSK 1 250 28 500 2 QPSK ¾ 250 28 375 3 QPSK ½ 250 28 250 4 QPSK ¾ 125 56 187. 5 5 QPSK ½ 125 56 125 6 QPSK ½ 83. 33 84 83. 3 7 BPSK ¾ 83. 33 84 62. 5 8 BPSK Repetition code x bands 125 56 17. 86 Submission 27 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Bit rates vs. Number

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Bit rates vs. Number of sub-bands • In each operation mode different number of sub-bands can be used • The table shows Bit-Rates for different number of sub-bands under different operation modes • Mode 5 with 7 sub-bands supports 125 Mbps (Meets IEEE 110 Mpbs requirement) • Mode 3 with 7 sub-bands supports 250 Mbps (Meets IEEE 200 Mpbs requirement) • Mode 1 with 7 sub-bands supports 500 Mbps for scalability • Mode 8 is used for the beacon, same information is transmitted over all sub-bands Submission 28 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Time-Frequency interleaving sequences •

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Time-Frequency interleaving sequences • Each piconet uses a different time-frequency interleaving sequence of length 7 • The “same” sequence is used for the upper frequency set (in parallel to the lower set ) • The set is used according to the sequence, the mode of operation and the number of sub-bands to be used Submission 29 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Collision Example: S 1

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Collision Example: S 1 and S 2 Ø Only one collision for every possible time offset Submission 30 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Variable-rate Time-Frequency interleaving sequences

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Variable-rate Time-Frequency interleaving sequences • Example for 7 sub-bands using S 2 in the different operation modes: 250, 125 and 83. 3 Mpps • Preserve time-frequency sequences collision properties for all modes • Reduce multi-path effect on collision between Piconets • Improve multi-path mitigation and enable energy collection Submission 31 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Variable Rate Time Frequency

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Variable Rate Time Frequency interleaving sequences • Example for 4 sub-bands using S 2 in the different operation modes: 250, 125 and 83. 3 Mpps • For lower number of sub-bands only relevant sub-bands are used • Preserve the collision properties for any number of sub-bands Submission 32 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Multiple-Access • Use of

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Multiple-Access • Use of different time-frequency interleaving sequences in different Piconets to reduce collisions • Reduce number of channels in use, to reduce collisions (FDM alternative when link budget good enough) • Reduce pulse repetition frequency to reduce multi-path effects on Multiple access Submission 33 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Preamble • Use CAZAC

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Preamble • Use CAZAC sequences over all subbands in use (Similar to mode 8) • Approximately 10 Micro Seconds • Achieve False-Alarm and Miss-Detect requirements under multi-path and multiple access interference • Use color code to improve Piconet identification Submission 34 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Contents • • Targets

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Contents • • Targets Main Features Physical layer Implementation and Feasibility MAC enhancements Performance Self Evaluation Conclusions Submission 35 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Block Diagram – Analog

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Block Diagram – Analog Section Submission 36 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Block Diagram – Digital

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Block Diagram – Digital Section Coded bits are being spread over the different sub-bands Submission 37 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Technical Feasibility Establish wireless

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Technical Feasibility Establish wireless link using prototype: 15 Mbps @ 30 meters 30 Mbps @ 25 meters 60 Mbps @ 18 meters Submission 38 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Size The size was

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Size The size was calculated using Si. Ge process with f. T=60 GHz for the analog blocks and 0. 13 CMOS process for the digital blocks. The size includes pads overhead. Submission 39 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Main Modes: Bit Rates

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Main Modes: Bit Rates versus Power Consumption and Link Margin PHY Tx Power [m. W] (0. 13 u) Total PHY Tx Power [mw] RF- Rx Power [m. W] PHY Rx Total Power PHY Rx [m. W] Power (0. 13 u) [m. W] Mode Bit Rate with 7 subbands Link Budget Margin RF- Tx Power [m. W] 5 125 4. 84 d. B @10 m 65 20 85 100 30 130 3 250 9. 79 d. B @4 m 95 30 125 140 40 180 Less than 1 m. Watt per 1 Mbps Submission 40 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Contents • • Targets

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Contents • • Targets Main Features Physical layer Implementation and Feasibility MAC enhancements Performance Self Evaluation Conclusions Submission 41 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 PHY Mapping on current

March 2003 doc. : IEEE 802. 15 -03/151 r 1 PHY Mapping on current 802. 15. 3 MAC • The proposed PHY can be used with the current MAC without modifications • Piconet channel is represented by a Time–Frequency interleaving seed sequence Ø Each Piconet choose a different seed sequence (channel) Ø Devices in the same piconet use the same seed sequence (channel) Channel = Sequence • The Piconet beacon frames are transmitted over all sub-bands Ø This is done transparently to the MAC (using PHY mode 8) Submission 42 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Location Awareness • Special

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Location Awareness • Special command frame that support Time Advanced measurement between two Piconet devices • Two devices exchange two messages Ø Dev A to Dev B: Send time A Ø Dev B to Dev A: Time Diff A(Receive Time A Send Time A ) and Send Time B Ø Dev A calculates Ø Time Diff B (Receive Time B - Send Time B ) Ø Time between Dev A to Dev B = ½ (Diff A + Diff B) Submission 43 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Contents • • Targets

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Contents • • Targets Main Features Physical layer Implementation and Feasibility MAC enhancements Performance Self Evaluation Conclusions Submission 44 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Link Budget (7 sub-bands)

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Link Budget (7 sub-bands) Positive link margins for main modes Submission 45 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Performance under multi-path condition

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Performance under multi-path condition Without Equalizer • • Bit rate: 125 Mbps (Mode 5) Number of bands: 7 Simulating 400 channel realizations For each point either 250 packets or 21 packet errors were used • Results represent statistics of 5 Gbits • Note: Shadow parameter in channel model is very dominant Submission 46 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mbps LOS 0

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mbps LOS 0 -4 (CM 1) (with Shadow) Submission 47 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mbps LOS 0

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mbps LOS 0 -4 (CM 1) (No Shadow) Submission 48 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mbps LOS 0

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mbps LOS 0 -4 (CM 1) Statistics (With Shadow) Submission 49 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mbps CM 1

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mbps CM 1 -4 Statistics (90% Average PER with Shadow) Submission 50 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Performance under multi-path condition

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Performance under multi-path condition (Distance for 8% Average PER Best 90%) Modulation scheme copes with multi-path condition without any equalization Submission 51 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Co-Existence with 802. 11

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Co-Existence with 802. 11 A and 802. 11 B: Required attenuation below FCC limits 802. 11 a requires attenuation above FCC limits Submission 52 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Co-Existence (ADS simulation) System

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Co-Existence (ADS simulation) System co-exist with 802. 11 a and 802. 11 b Submission 53 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Interference Submission 54 Gadi

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Interference Submission 54 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 802. 11 a Interference

March 2003 doc. : IEEE 802. 15 -03/151 r 1 802. 11 a Interference 100 cm (ADS Simulation) Wanted signal bit energy @RED Intereferer signal bit energy @Blue 0. 008 EBIT_INT EBIT 0. 006 0. 004 0. 002 0. 000 0 10 20 30 40 50 60 70 time, nsec C/I [d. B] @Interefer: 5. 15 GHz, -30 d. Bm C/I F 1 A 31. 129 C/I F 2 A 23. 761 C/I F 3 A 13. 492 C/I F 5 A 11. 335 C/I F 6 A 24. 262 C/I F 7 A 36. 603 C/I F 8 A 44. 194 • Seven sub-bands with C/I better than 10 d. B after eliminating one sub-band (F 4 A) Submission 55 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 802. 11 a Interference

March 2003 doc. : IEEE 802. 15 -03/151 r 1 802. 11 a Interference 30 cm (ADS Simulation) Wanted signal bit energy @RED Intereferer signal bit energy @Blue 0. 008 EBIT_INT EBIT 0. 006 0. 004 0. 002 0. 000 0 10 20 30 40 50 60 70 time, nsec C/I [d. B] @Interefer: 5. 15 GHz, -20 d. Bm C/I F 1 A 21. 697 C/I F 2 A 14. 143 C/I F 3 A 3. 996 C/I F 5 A 1. 425 C/I F 6 A 14. 582 C/I F 7 A 26. 718 C/I F 8 A 34. 313 • Five sub-bands with C/I better than 10 d. B after eliminating one sub-band (F 4 A) Submission 56 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Performance with 802. 11

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Performance with 802. 11 a under AWGN • ISR=55 d. B in AWGN (including F. E. rejection) • Allows 30 cm separation Submission 57 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Performance with 802. 11

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Performance with 802. 11 a under CM 1 • ISR=50 d. B in CM 1 (including F. E. rejection) • Allows 50 cm separation Submission 58 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Performance Under Multiple-Access •

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Performance Under Multiple-Access • Desired piconet: LOS 0 -4 (CM 1: 49) • Interfering piconet: LOS 0 -4 (CM 1: 1) • Worst case shift between piconets • ISR=12. 3 d. B for 8% per • Allows R(Ref)/R(Int) = 4 • Example: R(Ref)=10 meters allows R(Int)=2. 5 meters • ISR can be improved by reducing number of sub-bands or increasing PRI Submission 59 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Contents • • Targets

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Contents • • Targets Main Features Physical layer Implementation and Feasibility MAC enhancements Performance Self Evaluation Conclusions Submission 60 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Self Evaluation – General

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Self Evaluation – General Solution Criteria Signal Robustness Technical Feasibility CRITERIA Evaluation Unit Manufacturing Cost (UMC) + Interference And Susceptibility + Coexistence + Manufacturability + Time To Market + Regulatory Impact + Scalability + Location Awareness 0 Submission 61 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Self Evaluation – PHY

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Self Evaluation – PHY Protocol Criteria Submission CRITERIA Evaluation Size and Form Factor + Payload Bit Rate + Packet Overhead + PHY-SAP Throughput + Simultaneously Operation Piconets + Signal Acquisition + System Performance + Link Budget + Sensitivity + Power Management Modes + Power Consumption + Antenna Practicality + 62 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Self Evaluation – MAC

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Self Evaluation – MAC Protocol Enhancement Criteria CRITERIA Evaluation MAC Enhancement and Modifications + Meets all selection criteria Submission 63 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Contents • • Targets

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Contents • • Targets Main Features Physical layer Implementation and Feasibility MAC enhancements Performance Self Evaluation Conclusions Submission 64 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Conclusions • Multi-Band scheme

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Conclusions • Multi-Band scheme Ø 30 Sub-bands allows flexible system Ømeets all selection criteria • Variable-Pulse-Rate ØLow power for lower bit rates ØReduces ISI problem without equalizer ØImproves multiple access • Technology demonstrated on prototype Submission 65 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 802. 15. 3 a

March 2003 doc. : IEEE 802. 15 -03/151 r 1 802. 15. 3 a Early Merge Work Wisair will be cooperating with: • • Intel Time Domain Discrete Time General Atomics Philips FOCUS Enhancements Samsung Objectives: We encourage participation by any party who can help us reach our goals. • “Best” Technical Solution • ONE Solution • Excellent Business Terms • Fast Time To Market Submission 66 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Backup Slides Submission 67

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Backup Slides Submission 67 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Contents • • Physical

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Contents • • Physical layer Implementation and Feasibility MAC enhancements Performance Submission 68 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Contents • • Physical

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Contents • • Physical layer Implementation and Feasibility MAC enhancements Performance Submission 69 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Contents • • Physical

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Contents • • Physical layer Implementation and Feasibility MAC enhancements Performance Submission 70 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 MAC Enhancements (1) •

March 2003 doc. : IEEE 802. 15 -03/151 r 1 MAC Enhancements (1) • UWB based WPAN system should support a higher bit rate (e. g. 110 Mbps, 200 Mbps) Ø Current MAC Throughput is degraded in high bit rate • Support a bigger packet length Ø Bigger packets may be needed for high data rate applications • Improve throughput Ø For both small and large packet sizes Ø For retransmission mode • Support Multiband channel assignment Ø Decide on usable sub bands Ø Select the time frequency interleaving sequence Submission 71 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 MAC Enhancements (2) PHY

March 2003 doc. : IEEE 802. 15 -03/151 r 1 MAC Enhancements (2) PHY SAP Data Throughput Calculation Payload Throughput PHY-SAP = N x Payload_bits / [ T_PA_INITIAL+T_SIFS + (N-1) x (T_PA_CONT+T_MIFS) + N x (Payload_bits/R_Pay+T_MACHDR + T_PHYHDR+T_HCS+T_FCS)] Submission 72 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 MAC Enhancements (3) IEEE

March 2003 doc. : IEEE 802. 15 -03/151 r 1 MAC Enhancements (3) IEEE 802. 15. 3 PHY-SAP Data Throughput N= 5 Frames T_PA_INITIAL = 15 u. Sec T_PA_CONT = 15 u. Sec Submission MACHDR=10 Octets PHYHDR=2 Octets 73 HCS=2 Octets T_SIFS = 10 u. Sec FCS = 4 Octets T_MIFS = 2 u. Sec Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 MAC Enhancements (4) IEEE

March 2003 doc. : IEEE 802. 15 -03/151 r 1 MAC Enhancements (4) IEEE 802. 15. 3 PHY-SAP Data Throughput in High Bit Rates N= 5 Frames T_PA_INITIAL = 15 u. Sec T_PA_CONT = 15 u. Sec Submission MACHDR=10 Octets PHYHDR=2 Octets 74 HCS=2 Octets T_SIFS = 10 u. Sec FCS = 4 Octets T_MIFS = 2 u. Sec Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 MAC Enhancements(5) Proposed MAC

March 2003 doc. : IEEE 802. 15 -03/151 r 1 MAC Enhancements(5) Proposed MAC Performance PHY-SAP Data Throughput in High Bit Rates N= 5 Frames T_PA_INITIAL = 15 u. Sec T_PA_CONT = 15 u. Sec Submission MACHDR=10 Octets PHYHDR=2 Octets 75 HCS=2 Octets T_SIFS = 10 u. Sec FCS = 4 Octets T_MIFS = 2 u. Sec Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 MAC Enhancements (6) Proposed

March 2003 doc. : IEEE 802. 15 -03/151 r 1 MAC Enhancements (6) Proposed MAC Frame Structure • Allow larger MAC frame body size (e. g. 4096 Octets Ø Frame body consists of N Sub-frames Ø Sub-frame consists of Data block unit and CRC Ø Data block unit is limited by a maximum number of octets (e. g. 512 octets) Submission 76 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 MAC Enhancements (7) •

March 2003 doc. : IEEE 802. 15 -03/151 r 1 MAC Enhancements (7) • The proposed UWB PHY structure is based on multi-band UWB system Ø MAC logical channel is mapped to several frequency bands Ø Some bands might be interfered (useless) by other existing systems (I. e IEEE 802. 11 a – 5 GHz) Ø MAC should be able to drive a Bands Quality Assessment (BQA) that determines whether a specific band is usable or not Ø The Piconet Coordinator (PNC) should be able to distribute the usable bands to all its associated devices Submission 77 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 MAC Enhancements (8) •

March 2003 doc. : IEEE 802. 15 -03/151 r 1 MAC Enhancements (8) • Provide BQA time slot at the Supperframe • Useful information is distributed as Information Element (IE) over PNC Beacon • Beacon will transmitted over the whole frequency bands Submission 78 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 MAC Enhancements (9) Submission

March 2003 doc. : IEEE 802. 15 -03/151 r 1 MAC Enhancements (9) Submission 79 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Contents • • Physical

March 2003 doc. : IEEE 802. 15 -03/151 r 1 Contents • • Physical layer Implementation and Feasibility MAC enhancements Performance Submission 80 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mbps CM 1

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mbps CM 1 channels Submission 81 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mbps CM 1

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mbps CM 1 (No Shadow) Submission 82 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mbps CM 1

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mbps CM 1 Statistics Submission 83 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mbps CM 2

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mbps CM 2 channels Submission 84 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mbps CM 2

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mbps CM 2 (No Shadow) Submission 85 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mbps CM 2

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mbps CM 2 Statistics Submission 86 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mbps CM 3

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mbps CM 3 channels Submission 87 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mbps CM 3

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mbps CM 3 (No Shadow) Submission 88 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mbps CM 3

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mbps CM 3 Statistics Submission 89 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mbps CM 4

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mbps CM 4 channels Submission 90 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mbps CM 4

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mbps CM 4 (No Shadow) Submission 91 Gadi Shor, Wisair

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mbps CM 4

March 2003 doc. : IEEE 802. 15 -03/151 r 1 125 Mbps CM 4 Statistics Submission 92 Gadi Shor, Wisair