March 2003 doc IEEE 802 15 03119 Project

  • Slides: 35
Download presentation
March, 2003 doc. : IEEE 802. 15 -03/119 Project: IEEE P 802. 15 Working

March, 2003 doc. : IEEE 802. 15 -03/119 Project: IEEE P 802. 15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [TG 3 a Oki CFP Presentation] Date Submitted: [ 3 March, 2003] Source: [Reed Fisher] Company [Oki Electric Industry Co. , Ltd. ] Address [2514 E. Maddox Rd. , Buford, GA 30519 USA. ] Voice: [1 -770 -271 -0529] E-Mail: [reedfisher@juno. com] [Hiroyo Ogawa] Company [Communication Research Laboratory Independent Administrative Institution ] Address [3 -4 Hikarino-oka, Yokosuka, Kanagawa, 239 -09847 Japan. ] Voice: [81 -46 -847 -5070], FAX[81 -46 -847 -5079] E-Mail: [hogawa@crl. go, jp] Re : [CFP presentation] Abstract: [Millmeter-wave ad-hoc wireless system for the alternate PHY to IEEE 802. 15. 3 MAC&PHY Standard for Alt PHY ] Purpose: [Proposal for an alternate PHY to IEEE 802. 15. 3 MAC&PHY Standard ] Notice : This document has been prepared to assist the IEEE P 802. 15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P 802. 15. Submission 1 Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 Millimeter-Wave Ad-hoc Wireless System Submission 2

March, 2003 doc. : IEEE 802. 15 -03/119 Millimeter-Wave Ad-hoc Wireless System Submission 2 Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 System Features • Utilization of unlicensed

March, 2003 doc. : IEEE 802. 15 -03/119 System Features • Utilization of unlicensed millimeter-wave band - Restricted small area but high speed data rate (125 Mbps) - High coexistence with the existing microwave band wireless system • Countermeasure in use of millimeter-wave band Complete cancellation of phase noise and frequency-offset by self-heterodyne transmission and detection technique Submission 3 Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 Application Images • Basic Ad-hoc system

March, 2003 doc. : IEEE 802. 15 -03/119 Application Images • Basic Ad-hoc system based on 802. 15. 3 a applications DEV DEV PNC • Ad-hoc information distribution system ad-hoc coverage area extension using P-P millimeter-wave link IP network APT 1 Contents Server APT 2 APT 3 Spot-type ad hoc Information Distribution system MT MT MT(out of service) Submission 4 Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 Base Band (BB) & IF processing

March, 2003 doc. : IEEE 802. 15 -03/119 Base Band (BB) & IF processing (1/2) • Basic transmission rate is 125 Mbps using DQPSK. • Configuration Schemes 1) Single channel structure using one modulator. -Simple structure using a high speed modulator (125 Mbps) 2) Multi-channel structure using 5 modulators. -Frequency division multiplex using low speed modulators (25 Mbps) -Number of channels is 5. -Transmission rate per channel is 25 Mbps (Total transmission rate is 125 Mbps) -Simultaneous transmission of divided frame In the following parts of this document, the system means the multi-channel structure type unless there is particular explanation. Submission 5 Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 Base Band (BB) & IF processing

March, 2003 doc. : IEEE 802. 15 -03/119 Base Band (BB) & IF processing (2/2) 1) Single channel structure BB BB & IF processing IF Tx Input data MAC control Packet distribute Channel code/decode Modulator /Demodulator BPF C RF Rx 125 Mbps f 1 Frequency allocation of IF band 2) Multi-channel structure BB Input data MAC control Packet distribute BB & IF processing Channel code/decode IF Modulator /Demodulator f 1 BPF C Σ f 2 f 3 f 4 f 5 Tx 25 Mbps Channel #1 Channel code/decode f 1 Modulator /Demodulator 25 MHz 25 Mbps Channel #2 Channel code/decode RF f 2 Modulator /Demodulator BPF C Σ Rx 25 Mbps Channel #5 Submission f 5 6 Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 RF processing • Transmission Wireless transmission

March, 2003 doc. : IEEE 802. 15 -03/119 RF processing • Transmission Wireless transmission of both the signal and the coherent local carrier using DSB • Reception Complete cancellation of phase-noise and frequency -offset by the self -heterodyne detection (square-law detection) Pt Local leak DSB mixer Pr Transmitter Receiver 2 B IF input T IF output ( )2 NF=F fi fc B B B IM 2 fc-fi Submission fc fc+fi B 7 fi f Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 PHY Frame Format (Single channel structure)

March, 2003 doc. : IEEE 802. 15 -03/119 PHY Frame Format (Single channel structure) 10 Byte (80 bits) MAC Header From MAC via PHY SAP Add PHY header, Calculate HCS 1024+4=1028 Byte (8224 bits) Payload+FCS 2 Byte (16 bits) 10 Byte (80 bits) 2 Byte (16 bits) PHY Header MAC Header 8224 bits HCS (Payload+FCS) 112 bits 8242 bits 130 bits Add Pad After channel coding (BCH(31, 26)) Add Preamble Add Unique word (Payload+FCS), Pad PHY Header, Mac Header, HCS, Pad 250 bits Preamble 20 bits 155 bits Unique word PHY Header, Mac Header, HCS, Pad, channel coding 9827 bits (Payload+FCS), Pad, ch. coding DQPSK (25 Mbps) Error Collection filed (BCH(31, 26)) FCS : Frame Check Sequence Submission HCS : Header Check Sequence Pad : Padding 8 Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 PHY Frame Format(Multi-channel structure) 10 Byte

March, 2003 doc. : IEEE 802. 15 -03/119 PHY Frame Format(Multi-channel structure) 10 Byte (80 bits) 1024+4=1028 Byte (8224 bits) MAC Header From MAC via PHY SAP Payload+FCS 1645 bits 10 Byte (80 bits) After dividing (payload+FCS) to 5 ch Add PHY header, Calculate HCS (Payload+FCS) MAC Header 2 Byte (16 bits) 10 Byte (80 bits) 2 Byte (16 bits) PHY Header MAC Header HCS 1645 bits (Payload+FCS) 112 bits 1664 bits 130 bits Add Pad After channel coding (BCH(31, 26)) Add Preamble Add Unique word PHY Header, Mac Header, HCS, Pad 250 bits Preamble 20 bits 155 bits Unique word PHY Header, Mac Header, HCS, Pad, channel coding (Payload+FCS), Pad 1984 bits (Payload+FCS), Pad, ch. coding DQPSK (25 Mbps) Error Collection filed (BCH(31, 26)) FCS : Frame Check Sequence Submission HCS : Header Check Sequence Pad : Padding 9 Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 Interference and Susceptibility Interference coming from

March, 2003 doc. : IEEE 802. 15 -03/119 Interference and Susceptibility Interference coming from the other standard systems is negligibly small. The interference attenuation by spurious strength and filter is expected between Millimeter-wave band (802. 15. 3 a) and Micro-wave band (other standard systems). <Calculation for interference from other standard system> Bluetooth IEEE 802. 15. 1 Center frequency IEEE 802. 11 b IEEE 802. 15. 3 IEEE 802. 11 a 2. 4 GHz 5. 4 GHz 0 d. Bm 20 d. Bm 15 d. Bm Tx antenna gain (GT) 0 d. Bi Spurious strength attenuation 47 d. B 50 d. B 40 d. B 29. 6 d. B 36. 5 d. B 55 d. B 42 d. B -131. 6 d. Bm -114. 6 d. Bm -103. 5 d. Bm Tx power Path loss at 0. 3 meter Rx filter attenuation of proposal system Interference to the proposed system (Rx filter attenuation is calculated by using N-degree Butterworth filter) Submission 10 Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 Coexistence The interference impacted to microwave

March, 2003 doc. : IEEE 802. 15 -03/119 Coexistence The interference impacted to microwave band systems, from this proposed systems, is sufficiently smaller than the Rx sensitivity of the microwave system. Therefore, coexistence is assured. <Calculation of interference impacted to other standard system from this proposal system> IEEE 802. 15. 3 a IEEE 802. 15. 1 IEEE 802. 15. 3 IEEE 802. 11 b IEEE 802. 11 a Center frequency 60 GHz 2. 4 GHz 5. 3 GHz Tx Power 10 d. Bm 20 d. Bm 15 d. Bm Tx Antenna Gain (GT) 0 d. Bi Rx Antenna Gain (GR) 0 d. Bi -70 d. Bm -75 d. Bm -76 d. Bm -82 d. Bm Rx Sensitivity Spurious strength loss 50 d. B Path loss at 0. 3 meter 55. 75 d. B Interference impacted to other system from 802. 15. 3 a Submission -95. 75 d. Bm 11 Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 Payload Bit Rate and Data Throughput

March, 2003 doc. : IEEE 802. 15 -03/119 Payload Bit Rate and Data Throughput Payload bit Rate 125 Mbps Data Throughput Single Frame Multi frame 77 Mbps (61. 6%) 82 Mbps (65. 6%) Modulation DQPSK Throughput = 5 channel×Throughput per channel = N×Payload_bits N×Frame Length+SIFS+(N-1)×MIFS Where, Payload_bit=1024/5 byte, N =1(single), 5(multi),SIFS=10μsec, MIFS=2μsec Frame Length= 409μsec(DQPSK) 17μsec (1) Single Frame (2) Multi frame Preamble 79. 4μsec(DQPSK) SD PHY-HDR MAC-HDR HCS Payload Preamble SD PHY-HDR MAC-HDR HCS Payload FCS MIFS 96. 4μsec Submission 2μsec FCS 10μsec SIFS Payload FCS SIFS 10μsec 12 Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 Simultaneously Operating Piconets - Co-channel separation

March, 2003 doc. : IEEE 802. 15 -03/119 Simultaneously Operating Piconets - Co-channel separation distance (dint) is about 7. 94 m, from the following calculation. - Each parameter is referred to link budget. - Calculation is as follows. - Tx antenna gain = Rx antenna gain = 8 d. Bi Piconet 1 Piconet 2 MS MS Interference signal : I Interference Transmitters Desired signal : S Test Receiver Tx antenna gain : 8 d. Bi Reference Transmitter MS At Tx antenna gain = Rx antenna gain = 8 d. Bi dint Tx power : 10 d. Bm -42 d. Bm Path loss at 1 meter : 68 d. B Rx antenna gain : 8 d. Bi System loss : 13 d. B -50 d. Bm -55 d. Bm SNR 12. 7 d. B Path loss at dint meter= 18 d. B -73 d. Bm -60. 3 d. Bm Proposal Min. Rx level: -66. 3 d. Bm -73 d. Bm ( dint meter= 7. 94 m) Submission 13 Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 Signal Acquisition (1/2) • Miss detect

March, 2003 doc. : IEEE 802. 15 -03/119 Signal Acquisition (1/2) • Miss detect probability of AWGN channel - Miss detect probability (Pmd) is probability which causes bit error more than 2 bits. - 1 bit error is permitted to detect unique word. - Eb/N 0 = 6. 7 d. B at Pmd=8 x 10 -2 - Calculation of Pmd is as follows BER (Bit Error Rate) = 1/2 erfc{ 2(Eb/N 0)1/2 sin(p/8) } Pmd_1 ch = 1 - {(1 - BER)x + (1 - BER)(x-1) * BER * x} x = unique word length (=20) for 1 channel Pmd = 1 - (1 - Pmd_1 th ch) (1 - Pmd_2 nd ch) (1 - Pmd_3 rd ch) (1 - Pmd_4 th ch) (1 - Pmd_5 th ch) It is assumed that Pmd_1 th ch = Pmd_2 nd ch = Pmd_3 rd ch= Pmd_4 th ch = Pmd_5 th ch Pmd = 1 - (1 - Pmd_1 ch)5 Submission 14 Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 Signal Acquisition (2/2) • False alarm

March, 2003 doc. : IEEE 802. 15 -03/119 Signal Acquisition (2/2) • False alarm probability of AWGN channel - False alarm probability (Pfa) is probability which detect unique ward after PHY Header. - Pfa = 1. 02 x 10 -2 - Calculation of Pfa is as follows Pfa_1 ch = 0. 520 x 2139= 2. 04 x 10 -3 20 = unique word length 2139 = (length from PHY Header to FCS with including FEC per 1 ch) Pfa = 1 - (1 - Pfa_1 th ch) (1 - Pfa_2 nd ch) (1 - Pfa_3 rd ch) (1 - Pfa_4 th ch) (1 - Pfa_5 th ch) It is assumed that Pfa_1 th ch = Pfa_2 nd ch = Pfa_3 rd ch= Pfa_4 th ch = Pfa_5 th ch Pfa=1 - (1 - Pfa_1 ch)5 = 1 –(1 – 2. 04 x 10 -3)5 = 1. 02 x 10 -2 5 = Number of channel Submission 15 Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 System Performance (1/3) • Required Eb/N

March, 2003 doc. : IEEE 802. 15 -03/119 System Performance (1/3) • Required Eb/N 0 for PER 8 % in AWGN channel - Required Eb/N 0 9. 7 d. B (125 Mbps, DQPSK) - Calculation of Psys is as follows BER 1 = 1/2 erfc{ 2(Eb/N 0)1/2 sin(p/8) } for DQPSK BER 2= 45 BER 12 (BER 2 is Bit Error Rate after BCH(31, 26)) P 1 = miss detection error (Pmd 1 ch) P 2 = probability which causes error from PHY Header to HCS (Length = m bit) = 1 – (1 – BER 2)m P 3 = probability which causes error from Payload to FCS (Length = n bit) = 1 – (1 – BER 2)n PER (Psys 1 ch) for 1 channel is as follows Psys 1 ch = P 1 + P 2 + P 3= P 1 + (1 – P 1)*P 2 + [1 – {P 1 + (1 – P 1)*P 2}]*P 3 Psys = 1 - (1 - Psys_1 th ch) (1 - Psys_2 nd ch) (1 - Psys_3 rd ch) (1 - Psys_4 th ch) (1 - Psys_5 th ch) It is assumed that Psys_1 th ch = Psys_2 nd ch = Psys_3 rd ch= Psys_4 th ch = Psys_5 th ch Psys = 1 - (1 - Psys_1 ch)5 Submission 16 Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 System Performance (2/3) • PER vs

March, 2003 doc. : IEEE 802. 15 -03/119 System Performance (2/3) • PER vs Eb/N 0 characteristics of AWGN channel At 125 Mbps (DQPSK) Submission 17 Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 System Performance (3/3) • PER vs

March, 2003 doc. : IEEE 802. 15 -03/119 System Performance (3/3) • PER vs Distance characteristics of AWGN channel - By using PER-Eb/N 0 characteristics, PER-Distance characteristics are calculated. - Parameters such as center frequency, propagation loss are referred to link budget. - PER at d = 10 m is less than 10 -5 At 125 Mbps (DQPSK) Submission 18 Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 Sensitivity Receiver Sensitivity= Noise Power+Required Eb/N

March, 2003 doc. : IEEE 802. 15 -03/119 Sensitivity Receiver Sensitivity= Noise Power+Required Eb/N 0 +Modulation Loss +Self-heterodyne Loss+Channel Multiplex Loss Term Noise Power Required Eb/No Modulation Loss Bit Rate -92 d. Bm -174 d. BHz+10 log 10(25 MHz)+8 d. B(NF) PER <8% 9. 7 d. B 3 d. B Self- heterodyne Loss 6 d. B Channel Multiplex Loss 7 d. B Receiver Sensitivity -66. 3 d. Bm Submission Note 125 Mbps(DQPSK) 10 log 10 (4) 10 log 10(5) 19 Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 Link Budget - Link budget is

March, 2003 doc. : IEEE 802. 15 -03/119 Link Budget - Link budget is calculated for antenna gain 0 d. Bi case and 8 d. Bi case. - Link margin is as follows. Link margin = -12 d. B (antenna gain 0 d. Bi) Link margin = 4 d. B (antenna gain 8 d. Bi) -From link budget, directional antenna is necessary for millimeter-wave band system. Submission 20 Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 Regulatory Compliance Geographical Region Japan USA

March, 2003 doc. : IEEE 802. 15 -03/119 Regulatory Compliance Geographical Region Japan USA Submission Transmission Power Limit 10 d. Bm Frequency band 59 GHz-66 GHz 57 GHz-64 GHz 21 Regulatory Radio Regulatory Law Article 4. 3 Enforcement Regulatory Article 6. 4 47 CFR 15. 225(e) Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 Scalability • 125 Mbps data rate

March, 2003 doc. : IEEE 802. 15 -03/119 Scalability • 125 Mbps data rate is supported by multi-channel (25 Mbps× 5 channel). • At 125 Mbps, DQPSK modulation/demodulation is used. • When the desired rate is less than 125 Mbps, it is provided by decreasing the number of active RF channel. • When the desired rate is greater than 125 Mbps, it could be provided by changing modulation method(see appendix). Submission 22 Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 Self-Evaluation -General Solution Criteria. CRITERIA REF.

March, 2003 doc. : IEEE 802. 15 -03/119 Self-Evaluation -General Solution Criteria. CRITERIA REF. IMPORTANCE LEVEL PROPOSER RESPONSE Unit Manufacturing Complexity (UMC) 3. 1 B 0 Interference And Susceptibility 3. 2. 2 A + Coexistence 3. 2. 3 A + Manufacturability 3. 3. 1 A + Time To Market 3. 3. 2 A 0 3. 3. 3 A + 3. 4 A 0 3. 5 C - Signal Robustness Technical Feasibility Regulatory Impact Scalability (i. e. Payload Bit Rate/Data Throughput, Channelization – physical or coded, Complexity, Range, Frequencies of Operation, Bandwidth of Operation, Power Consumption) Location Awareness Submission 23 Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 Self-Evaluation -PHY Protocol Criteria. CRITERIA Size

March, 2003 doc. : IEEE 802. 15 -03/119 Self-Evaluation -PHY Protocol Criteria. CRITERIA Size And Form Factor REF. 5. 1 IMPORTANCE LEVEL B PROPOSER RESPONSE 0 PHY-SAP Payload Bit Rate & Data Throughput Payload Bit Rate 5. 2. 1 A + Packet Overhead 5. 2. 2 A + PHY-SAP Throughput 5. 2. 3 A + Simultaneously Operating Piconets Signal Acquisition 5. 3 A 0 5. 4 A 0 System Performance 5. 5 A + Link Budget 5. 6 A + Sensitivity 5. 7 A 0 Power Management Modes 5. 8 B 0 Power Consumption 5. 9 A 0 Antenna Practicality 5. 10 B 0 Submission 24 Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 Self-Evaluation -MAC Protocol Enhancement Criteria. CRITERIA

March, 2003 doc. : IEEE 802. 15 -03/119 Self-Evaluation -MAC Protocol Enhancement Criteria. CRITERIA MAC Enhancements And Modifications Submission REF. IMPORTANCE LEVEL PROPOSER RESPONSE 4. 1. C 0 25 Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 Appendix Optional proposal for 250 Mbps

March, 2003 doc. : IEEE 802. 15 -03/119 Appendix Optional proposal for 250 Mbps Submission 26 Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 PHY Frame Format(Single channel structure) 10

March, 2003 doc. : IEEE 802. 15 -03/119 PHY Frame Format(Single channel structure) 10 Byte (80 bits) MAC Header From MAC via PHY SAP Add PHY header, Calculate HCS 1024+4=1028 Byte (8224 bits) Payload+FCS 2 Byte (16 bits) 10 Byte (80 bits) 2 Byte (16 bits) PHY Header MAC Header 8224 bits HCS (Payload+FCS) 112 bits 8242 bits 130 bits Add Pad 250 bits After channel coding (BCH(31, 26)) Preamble Add Unique word (Payload+FCS), Pad PHY Header, Mac Header, HCS, Pad 20 bits 155 bits Unique word PHY Header, Mac Header, HCS, Pad, channel coding 9827 bits (Payload+FCS), Pad, ch. coding DQPSK (25 Mbps) 16 QAM (50 Mbps) Error Collection filed (BCH(31, 26)) FCS : Frame Check Sequence Submission HCS : Header Check Sequence Pad : Padding 27 Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 PHY Frame Format(Multi-channel structure) 10 Byte

March, 2003 doc. : IEEE 802. 15 -03/119 PHY Frame Format(Multi-channel structure) 10 Byte (80 bits) 1024+4=1028 Byte (8224 bits) MAC Header From MAC via PHY SAP Payload+FCS 1645 bits 10 Byte (80 bits) After dividing (payload+FCS) to 5 ch Add PHY header, Calculate HCS (Payload+FCS) MAC Header 2 Byte (16 bits) 10 Byte (80 bits) 2 Byte (16 bits) PHY Header MAC Header HCS 1645 bits (Payload+FCS) 112 bits 1664 bits 130 bits Add Pad After channel coding (BCH(31, 26)) Add Preamble Add Unique word PHY Header, Mac Header, HCS, Pad 250 bits Preamble 20 bits 155 bits Unique word PHY Header, Mac Header, HCS, Pad, channel coding (Payload+FCS), Pad 1984 bits (Payload+FCS), Pad, ch. coding DQPSK (25 Mbps) 16 QAM (50 Mbps) Error Collection filed (BCH(31, 26)) FCS: Frame Check Sequence Submission HCS: Header Check Sequence Pad : Padding 28 Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 Payload Bit Rate and Data Throughput

March, 2003 doc. : IEEE 802. 15 -03/119 Payload Bit Rate and Data Throughput Payload bit Rate 250 Mbps Data Throughput Single Frame 122. 9 Mbps (49. 2%) Multiframe 135. 9 Mbps (54. 4%) Modulation 16 QAM Throughput = 5 channel×Throughput per channel = N×Payload_bits N×Frame Length+SIFS+(N-1)×MIFS Where, Payload_bit=1024/5 byte, N =1(single), 5(multi),SIFS=10μsec, MIFS=2μsec Frame Length=213μsec(16 QAM) 17μsec (1) Single Frame (2) Multi frame Preamble 39. 7μsec(16 QAM) SD PHY-HDR MAC-HDR HCS Payload Preamble SD PHY-HDR MAC-HDR HCS Payload FCS MIFS 56. 7μsec Submission 2μsec FCS 10μsec SIFS Payload FCS SIFS 10μsec 29 Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 Simultaneously Operating Piconets - Co-channel separation

March, 2003 doc. : IEEE 802. 15 -03/119 Simultaneously Operating Piconets - Co-channel separation distance (dint) is about 7. 94 m, from the following calculation. - Each parameter is referred to link budget. - Calculation is as follows. - Tx antenna gain = Rx antenna gain = 8 d. Bi Piconet 1 Piconet 2 MS MS Interference signal : I Interference Transmitters Desired signal : S Test Receiver Tx antenna gain : 8 d. Bi Reference Transmitter MS At Tx antenna gain = Rx antenna gain = 8 d. Bi dint Tx power : 10 d. Bm -42 d. Bm Path loss at 1 meter : 68 d. B Rx antenna gain : 8 d. Bi System loss : 13 d. B -50 d. Bm -55. 8 d. Bm Proposal Min. Rx level: -61. 8 d. Bm -55 d. Bm SNR 17. 2 d. B Path loss at dint meter= 18 d. B -73 d. Bm ( dint meter= 7. 94 m) Submission 30 Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 System Performance (1/3) • Required Eb/N

March, 2003 doc. : IEEE 802. 15 -03/119 System Performance (1/3) • Required Eb/N 0 for PER 8 % in AWGN channel - Required Eb/N 0 11. 2 d. B (250 Mbps/16 QAM) - Calculation of Psys is as follows BER 1 = 1/2 erfc{ 2(Eb/N 0)1/2 sin(p/8) } for DQPSK from (Preamble to HCS) BER 1= (3/8) erfc((CNR/10)1/2) for 16 QAM for (Payload+FCS) BER 2= 45 BER 12 (BER 2 is Bit Error Rate after BCH(31, 26)) P 1 = miss detection error (Pmd 1 ch) P 2 = probability which causes error from PHY Header to HCS (Length = m bit) = 1 – (1 – BER 2)m P 3 = probability which causes error from Payload to FCS (Length = n bit) = 1 – (1 – BER 2)n PER (Psys 1 ch) for 1 channel is as follows Psys 1 ch = P 1 + P 2 + P 3= P 1 + (1 – P 1)*P 2 + [1 – {P 1 + (1 – P 1)*P 2}]*P 3 Psys = 1 - (1 - Psys_1 th ch) (1 - Psys_2 nd ch) (1 - Psys_3 rd ch) (1 - Psys_4 th ch) (1 - Psys_5 th ch) It is assumed that Psys_1 th ch = Psys_2 nd ch = Psys_3 rd ch= Psys_4 th ch = Psys_5 th ch Psys = 1 - (1 - Psys_1 ch)5 Submission 31 Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 System Performance (2/3) • PER vs

March, 2003 doc. : IEEE 802. 15 -03/119 System Performance (2/3) • PER vs Eb/N 0 characteristics of AWGN channel At 250 Mbps (16 QAM) Submission 32 Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 System Performance (3/3) • PER vs

March, 2003 doc. : IEEE 802. 15 -03/119 System Performance (3/3) • PER vs Distance characteristics of AWGN channel - By using PER-Eb/N 0 characteristics, PER-Distance characteristics are calculated. - Parameters such as center frequency, propagation loss are referred to link budget. - PER at d = 4 m is less than 10 -4. At 250 Mbps (16 QAM) Submission 33 Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 Sensitivity Receiver Sensitivity= Noise Power+Required Eb/No

March, 2003 doc. : IEEE 802. 15 -03/119 Sensitivity Receiver Sensitivity= Noise Power+Required Eb/No +Modulation Loss +Self-heterodyne Loss+Channel Multiplex Loss Term Noise Power Required Eb/No Modulation Loss Bit Rate -92 d. Bm -174 d. BHz+10 log 10(25 MHz)+8 d. B(NF) 11. 2 d. B PER <8% 6 d. B Self- heterodyne Loss 6 d. B Channel Multiplex Loss 7 d. B Receiver Sensitivity Submission Note 250 Mbps(16 QAM) 10 log 10 (4) 10 log 10(5) -61. 8 d. Bm 34 Reed Fisher, Oki

March, 2003 doc. : IEEE 802. 15 -03/119 Link Budget for 250 Mbps Submission

March, 2003 doc. : IEEE 802. 15 -03/119 Link Budget for 250 Mbps Submission 35 Reed Fisher, Oki