Majorana Fermions and Topological Insulators Charles L Kane

  • Slides: 18
Download presentation
Majorana Fermions and Topological Insulators Charles L. Kane, University of Pennsylvania I. Topological Band

Majorana Fermions and Topological Insulators Charles L. Kane, University of Pennsylvania I. Topological Band Theory - II. Integer Quantum Hall Effect 2 D Quantum Spin Hall Insulator 3 D Topological Insulator Topological Superconductor Majorana Fermions - Superconducting Proximity Effect on Topological Insulators - A route to topological quantum computing? Thanks to Gene Mele, Liang Fu, Jeffrey Teo

The Insulating State Characterized by energy gap: absence of low energy electronic excitations Covalent

The Insulating State Characterized by energy gap: absence of low energy electronic excitations Covalent Insulator Atomic Insulator e. g. intrinsic semiconductor e. g. solid Ar The vacuum electron 4 s Egap ~ 10 e. V 3 p Dirac Vacuum Egap = 2 mec 2 ~ 106 e. V Egap ~ 1 e. V Silicon positron ~ hole

The Integer Quantum Hall State 2 D Cyclotron Motion, Landau Levels E Hall Conductance

The Integer Quantum Hall State 2 D Cyclotron Motion, Landau Levels E Hall Conductance sxy = n e 2/h IQHE without Landau Levels (Haldane PRL 1988) Graphene in a periodic magnetic field B(r) +- + - + +- + - + B(r) = 0 Zero gap, Dirac point B(r) ≠ 0 Energy gap sxy = e 2/h Band structure k Egap

Topological Band Theory The distinction between a conventional insulator and the quantum Hall state

Topological Band Theory The distinction between a conventional insulator and the quantum Hall state is a topological property of the manifold of occupied states The set of occupied Bloch wavefunctions vector bundle over the torus. defines a U(N) Classified by the first Chern class (or TKNN invariant) (Thouless et al, 1984) Berry’s connection Berry’s curvature 1 st Chern class Trivial Insulator: n = 0 Quantum Hall state: sxy = n e 2/h The TKNN invariant can only change at a phase transition where the energy gap goes to zero

Edge States Gapless states must exist at the interface between different topological phases IQHE

Edge States Gapless states must exist at the interface between different topological phases IQHE state n=1 Vacuum n=0 y n=1 n=0 x Smooth transition : gap must pass through zero Edge states ~ skipping orbits Gapless Chiral Fermions : E = v k Band inversion – Dirac Equation M>0 Egap E Egap M<0 K’ Haldane Model K ky Bulk – Edge Correspondence : Domain wall bound state y 0 Jackiw, Rebbi (1976) Su, Schrieffer, Heeger (1980) Dn = # Chiral Edge Modes

Time Reversal Invariant 2 Topological Insulator Time Reversal Symmetry : All states doubly degenerate

Time Reversal Invariant 2 Topological Insulator Time Reversal Symmetry : All states doubly degenerate Kramers’ Theorem : 2 topological invariant (n = 0, 1) for 2 D T-invariant band structures n=1 : Topological Insulator n=0 : Conventional Insulator E E Edge States Kramers degenerate at time reversal invariant momenta k* = -k* + G k*=0 k*=p/a n is a property of bulk bandstructure. k*=0 Easiest to compute if there is extra symmetry: 1. Sz conserved : independent spin Chern integers : Quantum spin Hall Effect : k*=p/a J↑ (due to time reversal) J↓ E 2. Inversion (P) Symmetry : determined by Parity of occupied 2 D Bloch states

2 D Quantum Spin Hall Insulator I. Graphene ↑ Kane, Mele PRL ‘ 05

2 D Quantum Spin Hall Insulator I. Graphene ↑ Kane, Mele PRL ‘ 05 ↓ • Intrinsic spin orbit interaction p/a 0 small (~10 m. K-1 K) band gap • Sz conserved : “| Haldane model |2” • Edge states : G = 2 e 2/h Eg 2 p/a ↓ ↑ ↑ ↓ II. Hg. Cd. Te quantum wells Theory: Bernevig, Hughes and Zhang, Science ’ 06 Experiement: Konig et al. Science ‘ 07 d < 6. 3 nm Normal band order d > 6. 3 nm: Inverted band order E E G 6 ~ s G 8 ~ p G 6 ~ s Conventional Insulator QSH Insulator k d Hg. Te Hgx. Cd 1 -x. Te G ~ 2 e 2/h in QSHI Normal Inverted

3 D Topological Insulators There are 4 surface Dirac Points due to Kramers degeneracy

3 D Topological Insulators There are 4 surface Dirac Points due to Kramers degeneracy ky L 4 L 1 L 3 E E kx OR L 2 2 D Dirac Point Surface Brillouin Zone k=La k=Lb How do the Dirac points connect? Determined by 4 bulk 2 topological invariants n 0 ; (n 1 n 2 n 3) n 0 = 1 : Strong Topological Insulator Fermi circle encloses odd number of Dirac points Topological Metal : 1/4 graphene Robust to disorder: impossible to localize n 0 = 0 : Weak Topological Insulator Fermi circle encloses even number of Dirac points Related to layered 2 D QSHI EF

Bi 1 -x. Sbx Theory: Predict Bi 1 -x. Sbx is a topological insulator

Bi 1 -x. Sbx Theory: Predict Bi 1 -x. Sbx is a topological insulator by exploiting inversion symmetry of pure Bi, Sb (Fu, Kane PRL’ 07) Experiment: ARPES (Hsieh et al. Nature ’ 08) • Bi 1 -x Sbx is a Strong Topological Insulator n 0; (n 1, n 2, n 3) = 1; (111) • 5 surface state bands cross EF between G and M Bi 2 Se 3 ARPES Experiment : Y. Xia et al. , Nature Phys. (2009). Band Theory : H. Zhang et. al, Nature Phys. (2009). • n 0; (n 1, n 2, n 3) = 1; (000) : Band inversion at G • Energy gap: D ~. 3 e. V : A room temperature topological insulator • Simple surface state structure : Control EF on surface by exposing to NO 2 Similar to graphene, except only a single Dirac point EF

Topological Superconductor, Majorana Fermions BCS mean field theory : Bogoliubov de Gennes Hamiltonian Particle-Hole

Topological Superconductor, Majorana Fermions BCS mean field theory : Bogoliubov de Gennes Hamiltonian Particle-Hole symmetry : Quasiparticle redundancy : 1 D 2 Topological Superconductor : n = 0, 1 Discrete end state spectrum : E D 0 -D END n=0 “trivial” E -E (Kitaev, 2000) n=1 “topological” D 0 -D E=0 Majorana Fermion bound state “half a state”

Periodic Table of Topological Insulators and Superconductors Kitaev, 2008 Schnyder, Ryu, Furusaki, Ludwig 2008

Periodic Table of Topological Insulators and Superconductors Kitaev, 2008 Schnyder, Ryu, Furusaki, Ludwig 2008 Anti-Unitary Symmetries : - Time Reversal : - Particle - Hole : Unitary (chiral) symmetry : Complex K-theory Altland. Zirnbauer Random Matrix Classes Real K-theory Bott Periodicity

Majorana Fermion : spin 1/2 particle = antiparticle ( g = g† ) Potential

Majorana Fermion : spin 1/2 particle = antiparticle ( g = g† ) Potential Hosts : Particle Physics : • Neutrino (maybe) Allows neutrinoless double b-decay. Condensed matter physics : Possible due to pair condensation • Quasiparticles in fractional Quantum Hall effect at n=5/2 • h/4 e vortices in p-wave superconductor Sr 2 Ru. O 4 • s-wave superconductor/ Topological Insulator. . . among others Current Status : NOT OBSERVED Topological Quantum Computing • • Kitaev, 2003 2 Majorana bound states = 1 fermion bound state - 2 degenerate states (full/empty) = 1 qubit 2 N separated Majoranas = N qubits Quantum Information is stored non locally - Immune from local sources of decoherence Adiabatic Braiding performs unitary operations - Non Abelian Statistics

Proximity effects : Engineering exotic gapped states on topological insulator surfaces m Dirac Surface

Proximity effects : Engineering exotic gapped states on topological insulator surfaces m Dirac Surface States : Protected by Symmetry 1. Magnetic : (Broken Time Reversal Symmetry) • Orbital Magnetic field : • Zeeman magnetic field : • Half Integer quantized Hall effect : 2. Superconducting : Fu, Kane PRL 07 Qi, Hughes, Zhang PRB (08) M. ↑ T. I. (Broken U(1) Gauge Symmetry) proximity induced superconductivity • S-wave superconductor • Resembles spinless p+ip superconductor • Supports Majorana fermion excitations Fu, Kane PRL 08 S. C. T. I.

Majorana Bound States on Topological Insulators 1. h/2 e vortex in 2 D superconducting

Majorana Bound States on Topological Insulators 1. h/2 e vortex in 2 D superconducting state E D h/2 e 0 SC -D TI Majorana Fermion g 0 Quasiparticle Bound state at E=0 2. Superconductor-magnet interface at edge of 2 D QSHI M S. C. QSHI m>0 Egap =2|m| m<0 Domain wall bound state g 0

1 D Majorana Fermions on Topological Insulators 1. 1 D Chiral Majorana mode at

1 D Majorana Fermions on Topological Insulators 1. 1 D Chiral Majorana mode at superconductor-magnet interface E M SC kx TI : “Half” a 1 D chiral Dirac fermion 2. S-TI-S Josephson Junction f SC 0 SC TI Gapless non-chiral Majorana fermion for phase difference f = p f=p f p

Manipulation of Majorana Fermions Control phases of S-TI-S Junctions f 1 f 2 Tri-Junction

Manipulation of Majorana Fermions Control phases of S-TI-S Junctions f 1 f 2 Tri-Junction : A storage register for Majoranas Majorana present + - 0 Create Braid Measure A pair of Majorana bound states can be created from the vacuum in a well defined state |0>. A single Majorana can be moved between junctions. Allows braiding of multiple Majoranas Fuse a pair of Majoranas. States |0, 1> distinguished by • presence of quasiparticle. • supercurrent across line junction E E E 0 0 f-p

A Z 2 Interferometer for Majorana Fermions A Signature for Neutral Majorana Fermions Probed

A Z 2 Interferometer for Majorana Fermions A Signature for Neutral Majorana Fermions Probed with Charge Transport N even g 2 e g 1 e N odd • Chiral electrons on magnetic domain wall split into a pair of chiral Majorana fermions • “Z 2 Aharonov Bohm phase” converts an electron into a hole e g 2 -g 2 g 1 • d. ID/d. Vs changes sign when N is odd. Fu and Kane, PRL ‘ 09 Akhmerov, Nilsson, Beenakker, PRL ‘ 09 h

Conclusion • • A new electronic phase of matter has been predicted and observed

Conclusion • • A new electronic phase of matter has been predicted and observed - 2 D : Quantum spin Hall insulator in Hg. Cd. Te QW’s - 3 D : Strong topological insulator in Bi 1 -x. Sbx , Bi 2 Se 3, Bi 2 Te 3 Superconductor/Topological Insulator structures host Majorana Fermions - A Platform for Topological Quantum Computation Experimental Challenges - Charge and Spin transport Measurements on topological insulators - Superconducting structures : - Create, Detect Majorana bound states - Magnetic structures : - Create chiral edge states, chiral Majorana edge states - Majorana interferometer Theoretical Challenges - Further manifestations of Majorana fermions and non-Abelian states - Effects of disorder and interactions on surface states