Low FOC Low emission competitiveness CXSY SHIP DEVELOPMENT

  • Slides: 57
Download presentation
低油耗 Low FOC 低排放 Low emission 竞争力 competitiveness 中船澄西船型研发介绍 CXSY SHIP DEVELOPMENT INTRODUCTION Page

低油耗 Low FOC 低排放 Low emission 竞争力 competitiveness 中船澄西船型研发介绍 CXSY SHIP DEVELOPMENT INTRODUCTION Page

目录 CONTENT 1. 53000营运船舶优化设计及应用 53000 DWT BC OPTIMIZATION 内容 CONTENT 2. 在建船型介绍 BUILT SHIP

目录 CONTENT 1. 53000营运船舶优化设计及应用 53000 DWT BC OPTIMIZATION 内容 CONTENT 2. 在建船型介绍 BUILT SHIP INTRODUCTION 3、未来发展方向 FUTURE DEVELOPMENT Page 2

53000营运船舶优化设计及应用 53000 DWT BC OPTIMIZATION 1. 53000营运船舶优化设计及应用 53000 DWT BC OPTIMIZATION 内容 CONTENT 2.

53000营运船舶优化设计及应用 53000 DWT BC OPTIMIZATION 1. 53000营运船舶优化设计及应用 53000 DWT BC OPTIMIZATION 内容 CONTENT 2. 在建船型介绍 BUILT SHIP INTRODUCTION 3、未来发展方向 FUTURE DEVELOPMENT Page 3

澄西 53000 DWT BC优化内容 53000 DWT BC OPTIMIZATION CONTENT 1 2 3 • 优化背景

澄西 53000 DWT BC优化内容 53000 DWT BC OPTIMIZATION CONTENT 1 2 3 • 优化背景 • OPTIMIZATION BACKGROUND • 推进及阻力性能优化 • PROPULSION & RESISTANCE OPTIMIZATION • 机电部分优化 • MACH. & ELEC. OPTIMIZATION Page 4

优化背景 OPTIMIZATION BACKGROUND EEDI推出和生效 EEDI came into force 主机废气排放控制 NOx,SOx emission control 国际原油价格持续处于高位 Oil

优化背景 OPTIMIZATION BACKGROUND EEDI推出和生效 EEDI came into force 主机废气排放控制 NOx,SOx emission control 国际原油价格持续处于高位 Oil price keep to be on a high level 背景 background 线型优化(CFD+水池试验) Hull form optimizition 螺旋桨升级换代 Improved propeller design 新的机桨匹配理念 New M/E propeller matching concept 节能设备设计 Energy saving devices design 低阻油漆应用 Low friction paint 2012年 12月~2013年 5月, BDI干散货指数持续位于 1000点以下 From Dec. , 2012 May 2013, BDI index continually stay below 1000 points Page 5

和新船型指标对比 PARTICULARS COMPARISON WITH NEW DESIGNED SHIP 53000 DWT BC 与新一代相应吨级主流散货船性能指标对比 PARTICULARS COMPARISON WITH

和新船型指标对比 PARTICULARS COMPARISON WITH NEW DESIGNED SHIP 53000 DWT BC 与新一代相应吨级主流散货船性能指标对比 PARTICULARS COMPARISON WITH NEW DESIGNED SHIP 项目(ITEMS) 53000 BC 64000 BC 主尺度 Main dimensions 190. 00 x 32. 26 x 17. 50 199. 90 x 32. 26 x 18. 50 主机型号 M/E type MAN B&W 6 S 50 MC C 7. 1 TI MAN B&W 5 S 60 ME C 8. 2 TII M/E SMCR 9480 k. W x 127 rpm 8050 k. W x 89 rpm 对比功率点 POWER at Vs 7903 k. W 6842 k. W 吃水(米) Draft (m) 12. 50 11. 30 载重吨 Deadweight (t) 约 53000 约 51500 对应航速 Vs(CSR) Speed Vs(CSR) 14. 00 14. 40 SFOC(g/k. Wh) 167. 4 160. 0 油耗(CSR) FOC(CSR) L. C. V. =42700 k. J/kg 31. 8吨/天 26. 3吨/天 Page 6

船舶能量损失分析及应对策略 SHIP ENERGY LOSSES ANALYSIS & SOLUTION 船舶能量损失分析 Ship Energy Loss Analysis 减少能量损失的策略 Strategy

船舶能量损失分析及应对策略 SHIP ENERGY LOSSES ANALYSIS & SOLUTION 船舶能量损失分析 Ship Energy Loss Analysis 减少能量损失的策略 Strategy to reduce energy losses 船体损失 32% Hull losses 32% 线型优化 Hull form optimization 减小表面摩擦阻力 如气泡减阻技术、低阻油漆技术 Reduce skin friction e. g. Air lubrication, low friction coating 螺旋桨节能设备 螺旋桨损失 16% Propeller Losses 16% 机械损失 52% Machinery Losses 52% Page 7 Propeller energy saving devices 废热回收系统 Waste heat recovery system 提高机器热效率 Improve engine thermal efficiency

澄西 53000 DWT BC 推进优化内容 53000 DWT BC PROPULSION OPTIMIZATION CONTENT 1. 高效能螺旋桨设计 High

澄西 53000 DWT BC 推进优化内容 53000 DWT BC PROPULSION OPTIMIZATION CONTENT 1. 高效能螺旋桨设计 High Efficiency Propeller Design 2. 消渦鳍设计 Hub Votex Absorbed Fans Design 53000 DWT 推进及阻力性能优化 PROPULSION & RESISTANCE OPTIMIZATION 3. 前置预旋导轮设计 Pre-shrouded Vanes Design 4. 航行纵倾阻力分析(备选方案) Trim Optimization (optional) 5. 低阻油漆应用(备选方案) Low-Friction Paint(optional) Page 8

1. 高效桨设计 HIGH EFFICIENCY PROPELLER DESIGN 高效桨设计--设计效果图比较 Impact view comparison Original propeller New designed

1. 高效桨设计 HIGH EFFICIENCY PROPELLER DESIGN 高效桨设计--设计效果图比较 Impact view comparison Original propeller New designed high efficiency propeller Page 9

1. 高效桨设计 HIGH EFFICIENCY PROPELLER DESIGN 高效桨设计---基本性能参数比较 Principal particulars comparison NO. 参数(items) 原桨 优化桨

1. 高效桨设计 HIGH EFFICIENCY PROPELLER DESIGN 高效桨设计---基本性能参数比较 Principal particulars comparison NO. 参数(items) 原桨 优化桨 Original Designed 1 直径 Diameter(m) 5. 9 2 盘面比 Ae/Ao 0. 53 Area ratio 高效桨效果图 Impact view of high efficiency propeller 3 叶数 Blade number 4 4 4 叶型 (Blade type) / skew 5 重量 weight(kg) 15228 15150 6 空气中惯性矩(kg. m 2 ) 23912 23241 Moment of inertia(kg. m 2 ) Page 10

1. 高效桨设计 HIGH EFFICIENCY PROPELLER DESIGN CFD calculation results 推进效率显著提高 Efficiency improved Page 11

1. 高效桨设计 HIGH EFFICIENCY PROPELLER DESIGN CFD calculation results 推进效率显著提高 Efficiency improved Page 11

1. 高效桨设计 HIGH EFFICIENCY PROPELLER DESIGN 压载吃水高效桨效果CFD预报 CFD Prediction for ballast condition 满载吃水高效桨效果CFD预报 CFD

1. 高效桨设计 HIGH EFFICIENCY PROPELLER DESIGN 压载吃水高效桨效果CFD预报 CFD Prediction for ballast condition 满载吃水高效桨效果CFD预报 CFD Prediction for scant condition 原桨 Original N Pd (rpm) (k. W) 设计桨 Designed N Pd (rpm) (k. W) 节能 效果 Energy saving Vs (kn) 11 81. 5 2232. 7 80. 5 2142. 7 4. 03% 13 98. 6 3932. 0 97. 4 3776. 9 14 108. 2 5205. 0 106. 9 15 118. 4 6851. 5 16 129. 5 9034. 2 Vs (kn) 原桨 Original N Pd (rpm) (k. W) 设计桨 Designed N Pd (rpm) (k. W) 节能 效果 Energy saving 10 83. 3 2375. 0 82. 3 2275. 3 4. 20% 3. 94% 12 99. 5 3977. 0 98. 2 3807. 9 4. 25% 5000. 8 3. 92% 13 108. 6 5062. 0 107. 2 4847. 9 4. 23% 116. 9 6583. 5 3. 91% 14 118. 8 6661. 0 117. 3 6388. 8 4. 09% 128. 0 8681. 8 3. 90% 15 130. 3 9037. 0 128. 7 8673. 3 4. 02% 优化桨强度校核可同时满足DNV、BV和CCS三家船级社的规范要求; Propeller Strength meet the requirement s of CCS,DNV & BV 优化桨空气中的惯性矩约为 23241 kg. m 2,比原桨略小,不会对原轴系造成影响 The moment of inertia in air of the designed propeller is similar as the original propeller so no harmful effect being brought on to shaft system Page 12

2. 消渦鳍(HVAF) HUB VOTEX ABSORBED FANS 消渦鳍节能机理 energy saving mechanism 1、螺旋桨尾流矫直,打散毂涡,恢复 压力; Breaking down

2. 消渦鳍(HVAF) HUB VOTEX ABSORBED FANS 消渦鳍节能机理 energy saving mechanism 1、螺旋桨尾流矫直,打散毂涡,恢复 压力; Breaking down hub vortex to straighten wake flow of propeller, then the negative pressure on the cap can be recovered; 2、减小尾流旋转能量损失; Reducing propeller’s rotational losses of inner radii. 3、小叶产生扭力降低螺旋桨扭矩并产 生推力。 Producing a little negative torque to reduce propeller shaft torque and generating a little thrust; 消渦鳍效果图 Impact View of HVAF Page 13

2. 消渦鳍(HVAF) HUB VOTEX ABSORBED FANS 消渦鳍前期CFD效果分析 HVAF CFD ANALYSIS 设计点附近CFD计算结果 CFD计算表明,安装消涡鳍后螺旋桨 推力提高了1. 5%,扭矩略降低了0.

2. 消渦鳍(HVAF) HUB VOTEX ABSORBED FANS 消渦鳍前期CFD效果分析 HVAF CFD ANALYSIS 设计点附近CFD计算结果 CFD计算表明,安装消涡鳍后螺旋桨 推力提高了1. 5%,扭矩略降低了0. 3%, 从而使螺旋桨的效率增加了1. 9%. The CFD analysis indicate that the thrust are improved by 1. 5%, the torque is decreased by 0. 3%. So the propeller efficiency is improved by 1. 9% at design point 螺旋桨加装消涡鳍时性能CFD计算域及网格分布 Mesh of CFD domain used in HVAF calculation J 0 KT KQ η 0. 416 1. 015 0. 997 1. 018 Page 14 根据消渦鳍以往实船应用经验,预计 此消涡鳍的实船节能效果为CFD预报 值的1. 5 -2倍,可达到 2. 5%~3%。 The onboard energy saving effect of HVAF could be 2. 5%-3% with consideration of the application experience that the onboard effect of HVAF is 0. 5 -1 times better than CFD prediction

2. 消渦鳍(HVAF) HUB VOTEX ABSORBED FANS 消涡鳍(HVAF) 空泡水筒模型试验及效果展示 Model Test Impact View 试验表明: 消渦鳍节能效果约

2. 消渦鳍(HVAF) HUB VOTEX ABSORBED FANS 消涡鳍(HVAF) 空泡水筒模型试验及效果展示 Model Test Impact View 试验表明: 消渦鳍节能效果约 3% 3% Energy saving by HVAF 毂涡明显 Obvious hub votex 毂涡消除 Hub votex dispelled 换装前(导流冒): Without HVAF 换装后(消渦鳍): With HVAF Page 15

3. 前置预旋导轮(PSV) PRE SHROUDED VANES 节能机理: energy saving mechanism 1、改善分离流动,恢复艉部船体表面压力; Reducing the flow separation

3. 前置预旋导轮(PSV) PRE SHROUDED VANES 节能机理: energy saving mechanism 1、改善分离流动,恢复艉部船体表面压力; Reducing the flow separation over the after body of the vessel, recovering hull surface pressure at stern. 2、加速导管产生推力; Producing added thrust by accelerated duct; 3、产生预旋流减小尾流旋转能量损失; Producing favorable pre-swirled inflow into propeller by inside vanes and reducing rotational losses of slipstream; 4、均匀伴流场,提高螺旋桨效率。 Helping to improve propeller efficiency by make a more uniform inflow into the propeller; 前置预旋导轮效果图 PSV impact View Page 16

3. 前置预旋导轮(PSV) PRE SHROUDED VANES CFD模型网格划分 CFD Model CFD 分析结果 无导轮 Without PSV 有导轮

3. 前置预旋导轮(PSV) PRE SHROUDED VANES CFD模型网格划分 CFD Model CFD 分析结果 无导轮 Without PSV 有导轮 With PSV 尾部伴流场CFD分析效果 Wake Analysis Impact View Ws t 船身效率 Hull efficiency 0. 272 0. 207 1. 089 0. 293 0. 192 1. 142 4. 91% Page 17 节能效果 Energy saving

船模试验验证(螺旋桨+前置预旋导轮) MODEL TEST VERIFICATION(PROPELLER+PSV) 船模试验验证 Model test verification 水池试验模型 ship model 拖曳水池试验 towing tank

船模试验验证(螺旋桨+前置预旋导轮) MODEL TEST VERIFICATION(PROPELLER+PSV) 船模试验验证 Model test verification 水池试验模型 ship model 拖曳水池试验 towing tank test 验证试验主要包括旧桨敞水试验、新设计桨敞水试验、空泡水筒螺旋桨空泡试验及消渦鳍效用试验、旧桨船模 阻力及自航试验、新设计桨船模的阻力及自航试验、新设计桨+前置预旋导轮船模的阻力及自航试验。根据上述试验 的结果可得出本次优化的效果及优化前后的船舶性能对比(见下页)。 Original propeller & design propeller open water test, design propeller cavitation test, HVAF test, resistance and self propulsion test with original propeller, resistance and self propulsion test with design propeller have been carried out to verify the energy saving outcome. The final test results and comparison diagram are obtained from the above mentioned tests(next page) Page 18

船模试验验证(螺旋桨+前置预旋导轮) MODEL TEST VERIFICATION(PROPELLER+PSV) 船模试验结果和CFD分析预报结果基本一致 The tank test results are consistent with CFD prediction

船模试验验证(螺旋桨+前置预旋导轮) MODEL TEST VERIFICATION(PROPELLER+PSV) 船模试验结果和CFD分析预报结果基本一致 The tank test results are consistent with CFD prediction Page 19

设计点优化前后指标对比 MAIN PARTICULAR COMPARISON at OPTIMIZATION POINT 项目(ITEMS) 优化前(ORIGINAL) 优化后(OPTIMIZATION) Vs=14. 00 kn对应主机功率 Vs=14.

设计点优化前后指标对比 MAIN PARTICULAR COMPARISON at OPTIMIZATION POINT 项目(ITEMS) 优化前(ORIGINAL) 优化后(OPTIMIZATION) Vs=14. 00 kn对应主机功率 Vs=14. 00 kn M/E power 7903 k. W 7117 k. W 螺旋桨直径(米) PROPELLER DAIMETER (m) 5. 90 结构吃水(m) SCANT DRAFT (m) 12. 50 设计航速(设计吃水,CSR) Design speed (kn) 14. 00 SFOC(g/k. Wh) 167. 4 166. 7 柴油油耗(设计吃水,CSR) 基于热值 42700 k. J/kg DO SFOC (ISO) 31. 8 t/day 28. 5 t/day 重油消耗(设计吃水,CSR) 基于热值 40200 k. J/kg HFO SFOC (ISO) 33. 8 t/day 30. 3 t/day Page 20

优化前后油耗对比 FOC COMPARISON 结构吃水(T=12. 5 m) SCANT DRAFT (T=12. 5 m) 设计吃水(T=12. 5 m)

优化前后油耗对比 FOC COMPARISON 结构吃水(T=12. 5 m) SCANT DRAFT (T=12. 5 m) 设计吃水(T=12. 5 m) SCANT DRAFT (T=12. 5 m) 压载吃水(T=5. 0/7. 2 m) SCANT DRAFT (T=5. 0/7. 2 m) 优化后 油耗 FOC (t/day) 预计 优化效果 优化前 油耗 FOC (t/day) 优化后 油耗 FOC (t/day) 航速 Vs (kn) 预计 优化效果 优化前 油耗 FOC (t/day) 11. 50 12. 5% 17. 0 15. 0 6. 5% 15. 2 14. 3 13. 5% 12. 0 10. 5 12. 00 11. 9% 19. 2 17. 0 7. 1% 17. 3 16. 1 13. 2% 13. 9 12. 1 12. 50 11. 7% 21. 5 19. 1 8. 0% 19. 6 18. 1 12. 4% 15. 9 14. 0 13. 00 11. 4% 24. 2 21. 6 8. 1% 22. 0 20. 3 11. 9% 18. 3 16. 2 13. 50 10. 6% 27. 5 24. 6 7. 9% 24. 7 22. 8 12. 6% 21. 1 18. 6 14. 00 10. 0% 31. 8 28. 5 8. 0% 28. 3 26. 1 13. 2% 24. 2 21. 1 14. 50 10. 5% 37. 7 33. 3 8. 3% 33. 1 30. 2 13. 1% 27. 7 24. 1 1. 燃油消耗计算基于主机ISO标准 况,燃油热值 42700 k. J/kg。 All the FOC calculation are according to M/E ISO standard condition, fuel LCV value 42700 k. J/kg. 2. 计算所用航速及功率数值基于在中国船舶科学研究中心做的水池试验结果。 The speed and power figures used for FOC calculation are got from results of tank test at China Ship Scientific Research Center. Page 21

综合优化效果 GENERAL ENERGY SAVING 综合效果概览(结构吃水) General View of optimization(scant draft) 螺旋桨优化 加装消涡鳍 前置预旋导轮 propeller

综合优化效果 GENERAL ENERGY SAVING 综合效果概览(结构吃水) General View of optimization(scant draft) 螺旋桨优化 加装消涡鳍 前置预旋导轮 propeller HVAF PSV 实现节能约 4. 1% 实现节能约 3% 实现节能约 4. 9% ENERGY SAVING 4. 1% 3% 4. 9% 综合考虑螺旋桨优化、节能装置效果 Integrated consideration 总的 优化效果可达 10%。 The total energy saving are expected to be 10% Page 22

推进性能优化改装经济性分析 Economy Analysis 改装经济性分析 Economy analysis 年航行时间 200天 Annual sailing time 年节省 燃油费用约 40万美金

推进性能优化改装经济性分析 Economy Analysis 改装经济性分析 Economy analysis 年航行时间 200天 Annual sailing time 年节省 燃油费用约 40万美金 Page 23 燃油价格 600$/吨 Oil price 600$/t

实船安装图 ONBOARD FABRICATION Page 24

实船安装图 ONBOARD FABRICATION Page 24

4. 航行纵倾阻力分析(进行中) TRIM OPTIMIZATION ANALYSIS (IN PROGRESS) 确定纵倾范围 Trim range CFD分析 CFD analysis 53000

4. 航行纵倾阻力分析(进行中) TRIM OPTIMIZATION ANALYSIS (IN PROGRESS) 确定纵倾范围 Trim range CFD分析 CFD analysis 53000 DWT BC 满载:-0. 5~2. 75 m Loaded:-0. 5~2. 75 m 压载: 0~2. 75 m Ballast: 0~2. 75 m 初步效果分析 Preliminary analysis Page 25 水池验证 Tank test verification R=f(DWT, TRIM) 优选最佳快速性纵倾姿态航行 Trim selection according to resistance performance

4. 航行纵倾阻力分析(进行中) TRIM OPTIMIZATION ANALYSIS (IN PROGRESS) CFD纵倾阻力分析结果 CDF RESISTANCE ANALYSIS RESULTS 纵倾 收到功率

4. 航行纵倾阻力分析(进行中) TRIM OPTIMIZATION ANALYSIS (IN PROGRESS) CFD纵倾阻力分析结果 CDF RESISTANCE ANALYSIS RESULTS 纵倾 收到功率 相对大小 trim PD % 0. 5 7309 1. 94 0 7454 0 1 8053 ‐ 8. 03 2. 5 8115 ‐ 8. 87 数值计算结果表明,在纵倾范围 0. 5 m~‐ 2. 75 m内,尾倾越小,阻力 越小,收到功率越小。 因此实际航行推荐尽可能小的艉倾 航行姿态 CFD analysis indicates that the total resistance becomes higher along with the ship aft trim’s increase. So the possible minimum aft trim or slight fore trim is recommended during voyage Page 26

5. 低阻油漆应用简介(备选方案) LOW FRICTION PAINT(OPTIONAL) 1. 60个月长效防污周期 60 month fouling protection 2. 节省油漆用量 Reduced

5. 低阻油漆应用简介(备选方案) LOW FRICTION PAINT(OPTIONAL) 1. 60个月长效防污周期 60 month fouling protection 2. 节省油漆用量 Reduced paint usage 3. 涂层粗糙度小 产品优势 Smaller hull roughness advantages 4. 优异的抛光速率 Excellent polishing rate 水解型自抛光防污漆 Hydrolyzing self polishing anti fouling paint 如:PPG公司的Sigma Syladvance 800产品 e. g. : “Sigma Syladvance 800” produced by PPG 产品类型 Paint type 低阻油漆 Low friction paint 节能效果 Energy saving 成本 cost 可降低3%左右的油耗 3% fuel saving Page 27 使用低阻油漆增加的额外成本 回收周期约为 1年 Extra cost can be pay back within 1 year

机电部分改造内容 MACH. & ELEC. PART OPTIMIZATION 1. 辅机废热利用改装 A/E waste heat recovery Sys. refit

机电部分改造内容 MACH. & ELEC. PART OPTIMIZATION 1. 辅机废热利用改装 A/E waste heat recovery Sys. refit 53000 DWT 机电部分改造 Mach. & Elec. Part optimization 2. 机舱风机变频改装 2. E/R vent. Machine VFD refit 3. 中央淡水冷却系统变频改装 Central FW cooling system VFD refit 4. 汽缸油注油器改装 CYL. Oil lubricator VFD refit Page 28

1. 辅机废热利用系统安装 A/E WASTE HEAT RECOVERY INSTALLATION • 改装必要性 Refitting Demand 本船型在推进优化之后,设计航速定为 14. 00

1. 辅机废热利用系统安装 A/E WASTE HEAT RECOVERY INSTALLATION • 改装必要性 Refitting Demand 本船型在推进优化之后,设计航速定为 14. 00 kn,营运时对应主机功率 降低,主机废气量相应减少,造成航行时生产蒸汽的废气量不足。而使用燃 油锅炉则会增加燃油消耗,增加航行成本。 M/E exhaust gas amount was declined due to the operating power being cut down after ship optimization, and oil boiler has to be put In service, which bring on extra sail cost. • 改装简介 General Description 增加辅机废气锅炉,利用发电机废气锅炉的补充蒸汽用量,这样可以 减少组合锅炉的燃油消耗,达到经济节能的目的. A/E waste heat boiler to be installed so that sufficient steam could be generated. Oil could be saved by avoiding using the oil boiler. Page 29

1. 辅机废热利用系统安装 A/E WASTE HEAT RECOVERY INSTALLATION General washing steam A/E exhaust gas boiler

1. 辅机废热利用系统安装 A/E WASTE HEAT RECOVERY INSTALLATION General washing steam A/E exhaust gas boiler Steam pressure 6 7 bar Circular pump Condensate water A/E exhaust gas 系统简图 system diagram Page 30

1. 辅机废热利用系统安装 A/E WASTE HEAT RECOVERY INSTALLATION 经济性分析 Economy Analysis 改装成本:约 6. 7万美元 Refitting

1. 辅机废热利用系统安装 A/E WASTE HEAT RECOVERY INSTALLATION 经济性分析 Economy Analysis 改装成本:约 6. 7万美元 Refitting cost:abt. 67 k dollar 节省发电机燃油成本:约 3. 6万美元/年 AE fuel cost saving:abt. 36 k dollar/year 成本回收周期:约 2. 0年 Cost pay back time: abt. 2. 0 years Page 31

2. 机舱风机变频改装 E/R VENT. MACHINE VFD REFIT • 改装必要性 Refitting Demand 常规机舱通风系统按所有机舱设备同时使用的夏季标准 况进行设计, 实际使用时船舶设备很难达到设计时

2. 机舱风机变频改装 E/R VENT. MACHINE VFD REFIT • 改装必要性 Refitting Demand 常规机舱通风系统按所有机舱设备同时使用的夏季标准 况进行设计, 实际使用时船舶设备很难达到设计时 况,存在风机多余 况的浪费, 间接 造成燃油的浪费。 Generally, E/R vent. capacity is designed in accordance with the summer condition, vent. Capacity could be wasted while the actual condition is below that design condition. • 改装简介 General Description 机舱风机变频改装包括:主/应急配电板上机舱风机启动单元修改和 新设三个风机变频控制单元和一个机舱风机控制板 EFCP。改装后,利用 变频控制系统可以有效解决风机多余 况的问题,降低电力消耗。 The refit job is mainly include the vent. Machine start unit modification, install 3 variable frequency control unit and 1 control panel. Electricity consumption could be reduced by adjusting ventilation capacity in accordance with the service environmental condition. Page 32

2. 机舱风机变频改装 E/R VENT. MACHINE VFD REFIT 经济性分析 Economy Analysis 改装成本:约 6万美元 Refitting cost:abt.

2. 机舱风机变频改装 E/R VENT. MACHINE VFD REFIT 经济性分析 Economy Analysis 改装成本:约 6万美元 Refitting cost:abt. 60 k dollar 节省发电机燃油成本:约 1. 6万美元/年 AE fuel cost saving:abt. 16 k dollar/year 成本回收周期:约 4. 0年 Cost pay back time: abt. 4. 0 years Page 33

3. 中央淡水冷却系统变频改装 CENTRAL FW COOLING SYSTEM VFD REFIT • 改装必要性 Refitting Demand 常规中央淡水冷却系统按所有机舱设备同时使用的热带夏季标准 况

3. 中央淡水冷却系统变频改装 CENTRAL FW COOLING SYSTEM VFD REFIT • 改装必要性 Refitting Demand 常规中央淡水冷却系统按所有机舱设备同时使用的热带夏季标准 况 进行设计。实际使用时,受热情况取决于设备运转负荷和海水初始温度, 但是海水泵由于流量无法自动调节,导致海水泵多余 况的浪费。 Generally, the central FW cooling water system is designed in accordance with the summer standard condition. Extra cooling SW flux could be wasted since the flux can not be adjusted according to the actual service condition. • 改装简介 General Description 中央冷却淡水系统变频改装包括:主配电板上主海水泵启动单元修 改和新设两个主海水泵变频控制单元。改装后利用变频控制可以有效解决 海水泵多余 况的问题,降低电力消耗。 The refit job mainly include: main SW pump start unit modification and Install 2 variable frequency control unit for the s main SW pump. After refitting Electricity consumption could be reduced by adjusting the cooling SW flux in accordance with the actual operation condition Page 34

3. 中央淡水冷却系统变频改装 CENTRAL FW COOLING SYSTEM VFD REFIT 经济性分析 Economy Analysis 改装成本:约 4. 3万美元

3. 中央淡水冷却系统变频改装 CENTRAL FW COOLING SYSTEM VFD REFIT 经济性分析 Economy Analysis 改装成本:约 4. 3万美元 Refitting cost:abt. 43 k dollar 节省发电机燃油成本:约 1. 6万美元/年 AE fuel cost saving:abt. 16 k dollar/year 成本回收周期:约 2. 5年 Cost pay back time: abt. 2. 5 years Page 35

4. 汽缸油注油器改造 CYL OIL LURICATOR REFIT • 改装必要性 Refitting Demand 机械式注油改Alpha注油可降低气缸滑油量,降低排放,优化缸套磨 损,且操作方便。 Mechanism lubricator

4. 汽缸油注油器改造 CYL OIL LURICATOR REFIT • 改装必要性 Refitting Demand 机械式注油改Alpha注油可降低气缸滑油量,降低排放,优化缸套磨 损,且操作方便。 Mechanism lubricator change to Alpha lubricator could reduce the CYL oil consumption, provide emission reduction, reduce cylinder sheath abrasion and provide more convenient operation. • 改装简介 General Description 去除主机上的机械式注油器部件:包括传动机构、滑油管系、相关 电缆及其支撑件,安装更为先进的ALPHA注油器相关部件,包括泵站、 注油控制单元、人机控制面板等。 The refit job are mainly include remove the mechanism lubricator Components and install Alpha lubricator components including Pump unit, lubricating control unit and control panel etc. Page 36

4. 汽缸油注油器改造 CYL OIL LURICATOR REFIT 经济性分析 Economy Analysis 改装成本:约 1. 6万美元 Refitting cost:abt.

4. 汽缸油注油器改造 CYL OIL LURICATOR REFIT 经济性分析 Economy Analysis 改装成本:约 1. 6万美元 Refitting cost:abt. 16 k $ 节省汽缸油成本:约 3. 2万美元/年 Cylinder oil cost saving:abt. 32 k $ /year 成本回收周期:约 0. 5年 Cost pay back time: abt. 0. 5 years Page 37

机电部分改造经济性汇总 MACH. & ELEC. PART OPTIMIZATION ECONOMY SUMMARY 1. 辅机废热利用系统安装 A/E WASTE HEAT RECOVERY

机电部分改造经济性汇总 MACH. & ELEC. PART OPTIMIZATION ECONOMY SUMMARY 1. 辅机废热利用系统安装 A/E WASTE HEAT RECOVERY INSTALLATION 2. 机舱风机变频改装 E/R VENT. MACHINE VFD REFIT 3. 中央淡水冷却系统变频改装 CENTRAL FW COOLING SYSTEM VFD REFIT 4. 汽缸油注油器改造 CYL OIL LURICATOR REFIT 年节省燃油: 60 t 年节省燃油: 26 t 年节省燃油: 27 t 年节省汽缸油: 13 t Annual FO saving: 60 t Annual FO saving: 26 t Annual FO saving: 27 t Annual CYL saving: 13 t 节省成本: 3. 6万美元 节省成本: 1. 6万美元 节省成本: 3. 2万美元 Cost saving: 36 k $ Cost saving: 16 k $ Cost saving: 32 k $ 改装成本: 6. 7万美元 改装成本: 6. 0万美元 改装成本: 4. 3万美元 改装成本: 1. 6万美元 Refit cost: 67 k $ Refit cost: 60 k $ Refit cost: 43 k $ Refit cost: 16 k $ 成本回收期: 2年 成本回收期: 4年 成本回收期: 2. 5年 成本回收期: 0. 5年 Payback period: 2 years Payback period: 4 years Payback period: 2. 5 years Payback period: 0. 5 years 整套改装成本约 19万美元,改装后年节省燃油可达约 110吨,汽缸油约 13吨。年节省成 本约 10万美元。 The total cost of the 4 retrofit plan is about 190 k dollar. The annual cost can be reduced by 100 k dollar with consideration of saving 110 t FO and 13 t cylinder oil. Page 38

在建船型介绍 BUILT SHIP INTRODUCTION 1. 53000营运船舶优化设计及应用 53000 DWT BC OPTIMIZATION 内容 CONTENT 2. 在建船型介绍

在建船型介绍 BUILT SHIP INTRODUCTION 1. 53000营运船舶优化设计及应用 53000 DWT BC OPTIMIZATION 内容 CONTENT 2. 在建船型介绍 BUILT SHIP INTRODUCTION 3、未来发展方向 FUTURE DEVELOPMENT Page 39

39500吨 散货船 39500 DWT Bulk Carrier MAIN PARTICULARS • Length overall apprx. 179. 99

39500吨 散货船 39500 DWT Bulk Carrier MAIN PARTICULARS • Length overall apprx. 179. 99 m • Length between prep. 176. 65 m • Breadth 30. 00 m • Depth 15. 00 m • Draught, design 9. 50 m • Draught, scantling • Deadweight • Service Speed at NCR with 15% S. M. 10. 50 m 34400/39580 MT about 14. 0 kn CALSS NOTATIONS LR +100 A 1, Bulk Carrier, CSR, , BC A, GRAB[25], (holds 2 and 4 may be empty, maximum cargo density 3. 0 t/m 3), Ship. Right (ACS (B, D), CM), *IWS, LI, ESP +LMC, UMS, with the descriptive notes “Ship. Right(BWMP(S+F, T), SCM), Green Passport” TYPE WARTSILA 5 RTflex 50 B C MR 6050 k. W at 99 rpm MAIN ENGINE CSR 4600 k. W at 90. 4 rpm DIESEL GENERATORS 3 x 780 k. W FUEL OIL CONSUMPTION 163. 5 g/18. 3 T/day (L. C. V. =42700 k. J/kg) EEDI ENDURANCE Page 40 约 4. 72 g CO 2/(t nm), 低于现有基线约 24% 18000 NM

39500吨 散货船 船模试验 39500 DWT Bulk Carrier MODEL TEST RESULTS Page 41

39500吨 散货船 船模试验 39500 DWT Bulk Carrier MODEL TEST RESULTS Page 41

39500吨 散货船 特点 39500 DWT Bulk Carrier Advantages 39500 DWT Bulk Carrier Advantages 1

39500吨 散货船 特点 39500 DWT Bulk Carrier Advantages 39500 DWT Bulk Carrier Advantages 1 本船满足最新版的CSR规范,并需满足绿色环保证书要求,同时在规范不强制的情况 下为船东提供EEDI证书,超前满足了船舶越来越严格的环保要求。 The ship satisfy the CSR rules and green ship requirement. The EEDI performance can reach the EEDI rules’ requirement before 2025. 2 灵便性:本船的主尺度与目前市场上主流的灵便型散货船相同,但载货量却比同类型 船舶多出近 4000吨,同时该船的油耗却比同类型船舶低20%左右,是目前为止设计 指标最先进的灵便型散货船之一。 Handy type: the ship can acquire 4000 tons more deadweight compare with the other similar size handy size BC on current market while the fuel consumption is 20% lower. It is one of the most advanced ship type until today. 3 为满足船东装载木材甲板货的特殊要求,特别设计了主甲板面可倒立柱系统,能满足 船东装载大量原木的要求。 The folding stanchion system are designed to satisfy the timber loading demand. With the system plenty of spaces are provided for log loading. Page 42

38800吨 散货船 38800 DWT Bulk Carrier MAIN PARTICULARS • Length overall apprx. 180. 00

38800吨 散货船 38800 DWT Bulk Carrier MAIN PARTICULARS • Length overall apprx. 180. 00 m • Length between prep. 177. 00 m • Breadth 32. 00 m • Depth 15. 00 m • Draught, design • Draught, scantling • Deadweight • Service Speed at NCR with 15% S. M. CALSS NOTATIONS DNV +1 A 1 Bulk Carrier CSR, BC A(CH 2&4 empty)GRAB(20 ), DG B, BIS, TMON, BWM F, CLEAN, EO, COAT PSPC(B), Recyclable TYPE WARTSILA 5 RT flex 50 D Tier II MAIN ENGINE C MR CSR 6100 k. W x 99 rpm 4575 k. W x 89. 9 rpm 9. 50 m DIESEL GENERATORS 3 x 600 k. W 10. 50 m FUEL OIL CONSUMPTION 161. 7 g/17. 7 T/day (L. C. V. =42700 k. J/kg) 33400/38800 MT about 14. 0 kn EEDI ENDURANCE Page 43 约 4. 61 g CO 2/(t nm), 低于现有基线约 25% 18000 NM

38800吨 散货船 船模试验 38800 DWT Bulk Carrier MODEL TEST RESULTS Page 44

38800吨 散货船 船模试验 38800 DWT Bulk Carrier MODEL TEST RESULTS Page 44

38800吨 散货船 特点 38800 DWT Bulk Carrier Advantages 38800 DWT Bulk Carrier Advantages 1

38800吨 散货船 特点 38800 DWT Bulk Carrier Advantages 38800 DWT Bulk Carrier Advantages 1 油耗低,能效优。设计吃水状态,主机CSR负荷,日油耗仅有17. 7吨. 可承受的EEDI折减系数达到 25. 0%(理论计算),可满足MARPOL附则VI 2025年之前对 EEDI的要求。 Low FOC and good energy efficiency performance. Only 17. 7 t FO is consumed at M/E CSR rating. The ship can afford the current EEDI baseline to be deducted by 20%, which means can satisfy the EEDI rules’ requirement before 2025. 2 装载适应性强, 本船 2#、3#、4#货舱为箱形(box-shaped)结构设计,货舱总舱容更大。 2 -5#货舱舱口为大开口设计,装货选择性更大,装卸货更加方便。舱口盖上方设计可 装载木材(圆木和包装木材) Good loading adaptability. The No. 3/4/5 C. H. are designed as box shipped type so more cargo space can be obtained. The cargo selection range and loading convenience are better by open hatch design. Timber can be loaded on cargo hatch. 3 少压载水设计,独特的压载设计使得轻压载状态和风暴压载状态的压载水量都远远少 于同级别常规压载设计船舶,减轻压载水充放及处理负荷,更加凸显该船的绿色经济 性。 Less ballast water required during voyage at normal ballast and storm ballast condition, which means a very economical and environmental friendly design at a times of ballast water treatment requirement are coming into force. Page 45

64000吨 散货船 64000 DWT Bulk Carrier MAIN PARTICULARS • Length overall apprx. 199. 90

64000吨 散货船 64000 DWT Bulk Carrier MAIN PARTICULARS • Length overall apprx. 199. 90 m • Length between prep. 194. 50 m • Breadth 32. 26 m • Depth 18. 50 m • Draught, design 11. 30 m • Draught, scantling 13. 30 m CALSS NOTATIONS MAIN ENGINE CSR 6842 k. W x 84. 3 rpm 6604 k. W x 70. 8 rpm DIESEL GENERATORS 3 x 600 k. W FUEL OIL CONSUMPTION 160. 0 g/26. 3 T/day (L. C. V. =42700 k. J/kg) 156. 3 g/24. 8 T/day (L. C. V. =42700 k. J/kg) Abt. 63600 MT • Service Speed at 11. 30 m About 14. 40 kn NCR with 15% S. M. MAN B&W 5 S 60 ME C 8. 2 MAN B&W 5 G 60 ME C 9. 2 C MR 8050 k. W x 89 rpm 8500 k. W x 77 rpm TYPE EEDI • Deadweight DNV +1 A 1 Bulk Carrier, ESP, ES(S), CSR, COAT PSPC(B) BC A (holds NO. 2 & 4 may be empty), GRAB(20), E 0, TMON, BIS ENDURANCE Page 46 约 3. 739 g CO 2/(t nm), 低于现有基线约 24% 约 3. 814 g CO 2/(t nm), 低于现有基线约 22% 18000 NM

64000吨 散货船 船模试验 64000 DWT Bulk Carrier MODEL TEST RESULTS Page 47

64000吨 散货船 船模试验 64000 DWT Bulk Carrier MODEL TEST RESULTS Page 47

64000吨 散货船 特点 64000 DWT Bulk Carrier Advantages 1 油耗低,能效优。设计吃水状态,主机CSR,日油耗仅26. 3 t。可承受的EEDI折减系 数达 20.

64000吨 散货船 特点 64000 DWT Bulk Carrier Advantages 1 油耗低,能效优。设计吃水状态,主机CSR,日油耗仅26. 3 t。可承受的EEDI折减系 数达 20. 9%(已取得DNV证书),可满足MARPOL附则VI 2025年前对EEDI的要求。 Low FOC and good energy efficiency performance. Only 26. 3 t FO is consumed at M/E CSR rating. A DNV EEDI certificate had been issued with EEDI baseline reduction of 20. 9%, which means can satisfy the EEDI requirement before 2025 2 综合舱底水系统:舱底水系统设计了清洁水舱、清洁水排放监控、舱底水蒸发系统。 Integration Bilge Water System are deigned for the ship, including cleaning water tank, cleaning water discharge monitor and bilge water evaporation system 3 4 废热利用技术:将主机与发电机废热引入组合锅炉,增加了锅炉蒸发量。 Waste heat energy utilizing system are designed for the ship by import the A/E&M/E waste heat to combine boiler so that the evaporation capacity could be increased 因为本船甲板有克林吊,所以在船首特别设置了一个X波段雷达天线,有效地减少了 雷达盲区 A X band radar is mounted on forecastle deck so that the blind area can be effectively reduced. Page 48

未来发展方向 FUTURE DEVELOPMENT SHIP 1. 53000营运船舶优化设计及应用 53000 DWT BC OPTIMIZATION 内容 CONTENT 2. 在建船型介绍

未来发展方向 FUTURE DEVELOPMENT SHIP 1. 53000营运船舶优化设计及应用 53000 DWT BC OPTIMIZATION 内容 CONTENT 2. 在建船型介绍 BUILT SHIP INTRODUCTION 3、未来发展方向 FUTURE DEVELOPMENT Page 49

未来发展方向 FUTURE DEVELOPMENT SHIP 油船 TANKER 集装箱船 CONTAINER 液化天然气船 LNG CARRIER • 50000 DWT

未来发展方向 FUTURE DEVELOPMENT SHIP 油船 TANKER 集装箱船 CONTAINER 液化天然气船 LNG CARRIER • 50000 DWT TANKER • 1700 TEU CONTAINER • 2350 TEU CONTAINER • 2500 TEU CONTAINER • 6000 m 3 LNG CARRIER • 12000 m 3 LNG CARRIER Page 50

50000 吨油轮 50000 DWT TANKER MAIN PARTICULARS • Length overall apprx. 182. 87 m

50000 吨油轮 50000 DWT TANKER MAIN PARTICULARS • Length overall apprx. 182. 87 m • Length between prep. 176. 00 m TYPE • Breadth 32. 20 m • Depth 18. 80 m • Draught, design 11. 00 m • Draught, scantling 13. 00 m • Deadweight • Service Speed at NCR with 15% S. M. CALSS NOTATIONS DNV +1 A 1, TANKER, ESP, EO, CSR , VCS 2, IMO SHIPTYPE 3, TMON, SPM MAIN ENGINE MCR CSR MAN B&W 5 S 60 ME C 8. 2 8050 k. W x 89 rpm/min 6160 k. W x 81. 4 rpm/min DIESEL GENERATORS 2 x 1800 k. W + 1 x 1000 k. W 39400/50300 MT FUEL OIL CONSUMPTION 157. 8 g/23. 33 T/day (L. C. V. =42700 k. J/kg) 14. 5 kn ENDURANCE Page 51 20000 NM

1700 TEU 集装箱船 1700 TEU CONTAINER MAIN PARTICULARS • Length overall apprx. 172. 0

1700 TEU 集装箱船 1700 TEU CONTAINER MAIN PARTICULARS • Length overall apprx. 172. 0 m • Length between prep. 161. 8 m • Breadth 28. 1 m • Depth 14. 2 m • Draught, design 8. 50 m CALSS NOTATIONS TYPE Wartsila 6 RT flex 58 T E, Tier II MAIN ENGINE DIESEL GENERATORS FOC • Draught, scant • Deadweight • Service Speed at 8. 50 m NCR with 15% S. M. GL+ 100 A 5 CONTAINER SHIP, DG, IW, NAV, EP, BWM(D 2), RSD, LC + MC, AUT 9. 50 m MCR 14, 100 k. W x 105 r/min CSR 10, 530 k. W x 101. 4 r/min 4 x 1330 k. W 40. 6 t/d 22000 tons REEFER. CONTAINER 350 FEU 18. 5 kn ENDURANCE 14000 NM Page 52

2350 TEU 集装箱船 2350 TEU CONTAINER MAIN PARTICULARS • Length overall apprx. 189. 0

2350 TEU 集装箱船 2350 TEU CONTAINER MAIN PARTICULARS • Length overall apprx. 189. 0 m • Length between prep. 179. 0 m • Breadth 30. 4 m • Depth 16. 5 m • Draught, design 8. 50 m • Draught, scant • Deadweight • Service Speed at 8. 50 m NCR with 15% S. M. CALSS NOTATIONS LR +100 A 1, Container ship, Ship. Right (SDA, FDA plus(25, N/A), CM, ACS(B)), *IWS, LI, ECO, '+LMC, UMS, NAV 1 TYPE MAN B&W 6 G 60 ME C 9. 2 Tier II MCR MAIN ENGINE DIESEL GENERATORS CSR 13000 k. W x 97 r/min 11700 k. W x 93. 7 r/min 2 x 1360 + 2 x 1820 k. W FOC 44. 5 t/d 10. 50 m EEDI 13. 68, 30350 tons REFEER CONTAINER 500 FEU ENDURANCE 15000 NM 37. 4% 19. 0 kn Page 53

2500 TEU 集装箱船 2500 TEU CONTAINER MAIN PARTICULARS • Length overall apprx. 195. 0

2500 TEU 集装箱船 2500 TEU CONTAINER MAIN PARTICULARS • Length overall apprx. 195. 0 m • Length between prep. 185 m • Breadth 32. 2 m • Depth 17 m • Draught, design 9. 50 m • Draught, scant • Deadweight • Service Speed at 9. 50 m NCR with 15% S. M. CALSS NOTATIONS GL+ 100 A 5 CONTAINER SHIP, NAV, DG, IW, NAV 0, EP, BWM(D 2), RSD, LC, RSCS, + MC, AUT, EP D TYPE MAN 6 G 60 ME C 9. 2 Tier II MCR 16080 KW x 97 rpm MAIN ENGINE DIESEL GENERATORS CSR 12060 k. W x 93. 7 rpm 3 x 1881 k. W + 1 x 1440 k. W FOC 46. 7 t/d 11. 50 m EEDI 12. 51, 41. 2% 35000 tons REEFER CONTAINER 530 FEU ENDURANCE 15000 NM 19. 0 kn Page 54

6000 立方米 液化天然气船 6000 m 3 LNG MAIN PARTICULARS • Length overall apprx. CALSS

6000 立方米 液化天然气船 6000 m 3 LNG MAIN PARTICULARS • Length overall apprx. CALSS NOTATIONS Det Norske Veritas +1 A 1 Tanker for Liquefied Gas (Ship type 2 G, 650 kg/m 3, 7 bar g), EO, ICE 1 C 102. 90 m TYPE WARTSILA 6 L 46 • Length between prep. 93. 72 m • Breadth 19. 80 m MAIN ENGINE • Depth 11. 50 m FUEL OIL CONSUMPTION 23. 0 t/day (L. C. V. =42700 k. J/kg) • Draught, design 6. 70 m 4 x 590 k. W + 1 x 120 k. W • Draught, scant 7. 30 m DIESEL GENERATORS • Deadweight • Service Speed at 6. 70 m NCR with 15% S. M. MCR 5, 850 k. W at approx. 500 rpm 5200 tons Shaft generator 1000 k. W x 1 15. 0 kn ENDURANCE 12000 NM Page 55

12000 立方米 液化天然气船 12000 m 3 LNG MAIN PARTICULARS • Length overall apprx. 152.

12000 立方米 液化天然气船 12000 m 3 LNG MAIN PARTICULARS • Length overall apprx. 152. 30 m • Length between prep. 142. 36 m • Breadth 19. 80 m • Depth 11. 50 m • Draught, design 6. 70 m • Draught, scant • Deadweight • Service Speed at 6. 70 m NCR with 15% S. M. 8. 30 m CALSS NOTATIONS MAIN ENGINE Det Norske Veritas +1 A 1 Tanker for Liquefied Gas (Ship type 2 G, 650 kg/m 3, 7 bar g), EO, ICE 1 C TYPE MAN 6 S 46 MC C MK 8 MCR 8, 280 k. W x 129 rpm CSR 7, 450 k. W x 120 rpm FUEL OIL CONSUMPTION 32. 7 t/day (L. C. V. =42700 k. J/kg) DIESEL GENERATORS 4 x 590 k. W + 1 x 120 k. W 12500 tons Shaft generator 1900 k. W x 1 17. 0 kn ENDURANCE 11000 NM Page 56

中船澄西船型研发介绍 CXSY SHIP DEVELOPMENT INTRODUCTION Page 57

中船澄西船型研发介绍 CXSY SHIP DEVELOPMENT INTRODUCTION Page 57