Lockheed Martin Challenge Vertical Launch UAV Project Plan

  • Slides: 27
Download presentation
Lockheed Martin Challenge Vertical Launch UAV Project Plan

Lockheed Martin Challenge Vertical Launch UAV Project Plan

Mission Statement ∞ Construct an unmanned aerial vehicle (UAV) with a camera payload ∞

Mission Statement ∞ Construct an unmanned aerial vehicle (UAV) with a camera payload ∞ UAV must autonomously navigate with real-time video feed to ground station ∞ UAV must utilize a pneumatic vertical launch system

UAV Physical Layout Modified Byron’s Pipe Dream Design ∞ ∞ Constraints Wing Design ∞

UAV Physical Layout Modified Byron’s Pipe Dream Design ∞ ∞ Constraints Wing Design ∞ Airfoil Selection ∞ 2 Piece Assembly ∞ Materials Selection ∞ Composite vs. Film Covering ∞ Landing System ∞ Belly Land (FR) ∞ Tail ∞ Fuselage ∞ Camera Considerations

Propulsion ∞ Trade-off ∞ Gas ∞ Electric ∞ Propulsion Related Requirements ∞ 40 -50

Propulsion ∞ Trade-off ∞ Gas ∞ Electric ∞ Propulsion Related Requirements ∞ 40 -50 kt cruise ∞ 2 hour endurance ∞ Hacker A 60 L Series Possible Solutions ∞ Hacker ∞ AXI Gold 5330 ∞ Propeller AXI Gold 5330

Current Design Process ∞ XFLR 5 ∞ Methods ∞ Vortex Lattice ∞ Lifting Line

Current Design Process ∞ XFLR 5 ∞ Methods ∞ Vortex Lattice ∞ Lifting Line ∞ Output ∞ Cl, Cd ∞ Very efficient for low Reynolds Numbers ∞ Structures Spreadsheet ∞ Mike Garton ∞ Moto. Calc 8 ∞ Engine Requirements

Systems Integration ∞ Launch System ∞Attachment ∞ Avionics ∞Autopilot switchover

Systems Integration ∞ Launch System ∞Attachment ∞ Avionics ∞Autopilot switchover

Technical Challenges Endurance ∞Weight ∞Power ∞ Size – Humvee Capacity ∞ ∞ Launch Sequence

Technical Challenges Endurance ∞Weight ∞Power ∞ Size – Humvee Capacity ∞ ∞ Launch Sequence ∞Aircraft-Launch System Attachment ∞Control ∞Structural Integrity

Pneumatic Launch System Components Piston and Casing ∞ Cradle and Carriage ∞ Collapsible Legs

Pneumatic Launch System Components Piston and Casing ∞ Cradle and Carriage ∞ Collapsible Legs ∞ Pneumatic System ∞

Piston and Casing Encased piston tube ∞ Magnetic piston ∞ Rubber piston stop ∞

Piston and Casing Encased piston tube ∞ Magnetic piston ∞ Rubber piston stop ∞

Cradle and Carriage Magnetic carriage ∞ Carriage slides along casing above piston ∞ Cradle

Cradle and Carriage Magnetic carriage ∞ Carriage slides along casing above piston ∞ Cradle mounted on carriage ∞ Slot for hook attachment on plane ∞

Transportation Requirements: ∞To fit within the back cargo hold of a small Humvee ∞Assemble

Transportation Requirements: ∞To fit within the back cargo hold of a small Humvee ∞Assemble within ~5 min ∞ Design Solution: ∞ A compact rod-less pneumatic slide ∞ Collapsible stabilizing legs ∞ Launch from the ground ∞

Pneumatic System

Pneumatic System

Force Requirements ∞ Design Specifications: ∞ Plane weight 20 lbs ∞ 100 psi air

Force Requirements ∞ Design Specifications: ∞ Plane weight 20 lbs ∞ 100 psi air pressure ∞ Final launch height of 100 ft ∞ Using an Excel sheet to predict forces ∞ Determine: ∞ Air tank size ∞ Valve size ∞ Piston stroke length ∞ Etc.

Testing and Integration ∞ Testing ∞ Pneumatics ∞ Can we launch a 20 lb

Testing and Integration ∞ Testing ∞ Pneumatics ∞ Can we launch a 20 lb plane with a 100 psi of air to a 100 ft? ∞ If not what can we do? ∞ Actual field tests with a test plane ∞ Integration ∞ Plane cradle ∞ Autopilot control

Avionics and Electrical Systems Components Autopilot Video Ground Station

Avionics and Electrical Systems Components Autopilot Video Ground Station

Autopilot Requirements ∞ Autopilot System must: ∞Be capable of autonomously navigating using waypoint navigation

Autopilot Requirements ∞ Autopilot System must: ∞Be capable of autonomously navigating using waypoint navigation ∞Support a vertical pneumatic launch ∞Be capable of monitoring and controlling all systems necessary for flight ∞Support manual-override control ∞Be capable of transmitting real-time flight data to the ground control station

Autopilot ∞ Prime Concerns: ∞ GPS, Inertial Measurement Unit, Compass, Gyroscope modules ∞ Ability

Autopilot ∞ Prime Concerns: ∞ GPS, Inertial Measurement Unit, Compass, Gyroscope modules ∞ Ability to interface with aircraft systems ∞ Customization for launch and landing sequence ∞ Cost

Video Requirements ∞ Video System must: ∞Return real-time video to a base station ∞Be

Video Requirements ∞ Video System must: ∞Return real-time video to a base station ∞Be able to distinguish a 6” target at 100’ ∞Be capable of a minimum 30 minutes of operation ∞Be designed in a “modular” fashion

Camera ∞ Industrial Box style camera 100 ft ∞ Able to be customized based

Camera ∞ Industrial Box style camera 100 ft ∞ Able to be customized based on lens ∞ Vari-focal Auto-Iris Lens ∞ Manual adjustable focal length 45° 83 ft X / 83 pixels per foot 70° 100 ft 140 ft X / 140 pixels per foot

Ground Station Requirements ∞ Ground Station must: ∞ Display real-time video as transmitted from

Ground Station Requirements ∞ Ground Station must: ∞ Display real-time video as transmitted from the onboard camera ∞ Provide controls necessary for manual override ∞ Be capable of transmitting and receiving flight data to the onboard autopilot system ∞ Be mobile and have the ability to be transported in the back of a military humvee

Ground Station ∞ Separate displays for video and flight data ∞ Components chosen based

Ground Station ∞ Separate displays for video and flight data ∞ Components chosen based on onboard systems ∞ Mobile power source based upon requirements of ground station components

Primary Concerns ∞ Launch to cruise transition ∞ Data transmission and reception range ∞

Primary Concerns ∞ Launch to cruise transition ∞ Data transmission and reception range ∞ Flight time

Launch to Cruise Transition ∞ Vertical Launch ∞ How/When does main autopilot take over?

Launch to Cruise Transition ∞ Vertical Launch ∞ How/When does main autopilot take over? ∞ Customize autopilot for launch

Data Transmission/Reception ∞ Range above 10 miles becomes problematic ∞ Using a directional antenna

Data Transmission/Reception ∞ Range above 10 miles becomes problematic ∞ Using a directional antenna presents problems ∞ Omni-directional antenna – power consumption problems ∞ Planning on approximately 5 W transmitter for video system ∞ Independent transmitter for video system Radius: x Power Required: y Radius: 2 x Power Required: y 2 Radius: 3 x Power Required: y 3

Flight Time ∞ Original flight time requested by Lockheed Martin: 2 hrs ∞ Power

Flight Time ∞ Original flight time requested by Lockheed Martin: 2 hrs ∞ Power consumption for this length of time is problematic ∞ More Batteries = More Weight ∞ Control subsystem power consumption

Deliverables for Fall 2008 ∞ Project Plan – Sept 27, 2008 ∞ Initial design

Deliverables for Fall 2008 ∞ Project Plan – Sept 27, 2008 ∞ Initial design of each component – Oct 15, 2008 ∞ Physical system build complete – Nov 1, 2008 ∞ Integration of rail launch and aircraft – Nov 30, 2008 ∞ Begin testing of autopilot system – Nov 30, 2008 ∞ Testing of airplane and launch system – Dec 1, 2008 ∞ Final draft plan – Dec 15, 2008