linear optimization u nonlinear optimization u quadratic optimization





















- Slides: 21



数理最適化問題の種類 線形最適化問題(linear optimization) u 非線形最適化問題(nonlinear optimization) u 二次最適化問題(quadratic optimization) u NP-Hard 整数最適化問題(integer optimization) u 混合整数最適化問題(mixed integer optimization) u




2節 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 線形最適化問題④ from gurobipy import * model = Model ( " lo 1 " ) x 1 = model. add. Var (name="x 1" ) x 2 = model. add. Var (name="x 2" ) x 3 = model. add. Var (ub=30, name="x 3" ) model. update( ) model. add. Constr (2* x 1 + x 2 + x 3 <= 60) model. add. Constr ( x 1 + 2*x 2 + x 3 <= 60) model. set. Objective (15* x 1 + 18* x 2 + 30*x 3 , GRB. MAXIMIZE) model. optimize( ) print "Opt. Value=" , model. Obj. Val for v in model. get. Vars ( ): print v. Var. Name , v. X 実行結果 Opt. Value= 1230. 0 x 1 10. 0 x 2 10. 0 x 3 30. 0




3節 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 整数最適化問題④ from gurobipy import * model = Model ( " seisu " ) x = model. add. Var ( vtype=" I " ) y = model. add. Var ( vtype=" I " ) z = model. add. Var ( vtype=" I " ) model. update ( ) model. add. Constr ( x + y + z == 32) model. add. Constr (2* x + 4*y + 8* z == 80) model. set. Objective ( y + z , GRB. MINIMIZE) model. optimize ( ) print "Opt. Val. =" , model. Obj. Val print " (x , y , z)=" , x. X, y. X, z. X 実行結果 Opt. Val. = 4. 0 (x, y, z)= 28. 0 2. 0



4節 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 輸送問題③ from gurobipy import * d = { 1 : 80 , 2 : 270 , 3: 250 , 4 : 160 , 5: 180} M = { 1 : 500 , 2 : 500 , 3: 500} I=[1, 2, 3, 4, 5] J=[1, 2, 3] I , d = multidict ({ 1 : 80 , 2 : 270 , 3: 250 , 4 : 160 , 5: 180 }) J , M = multidict ({ 1 : 500 , 2 : 500 , 3: 500 } ) c={(1, 1): 4, (1, 2): 6, (1, 3): 9, (2, 1): 5, (2, 2): 4, (2, 3): 7, (3, 1): 6, (3, 2): 3, (3, 3): 4, (4, 1): 8, (4, 2): 5, (4, 3): 3, ( 5 , 1 ) : 10 , ( 5 , 2 ) : 8 , ( 5 , 3 ) : 4 , }

4節 1. 2. 3. 4. 5. 6. 7. 8. 輸送問題④ model = Model ( " transportation " ) x = {} for i in I : for j in J : x [ i , j ] = model. add. Var ( vtype="C" , name="x(%s , %s ) " % ( i , j ) ) model. update ( ) for i in I : model. add. Constr ( quicksum( x [ i , j ] for j in J ) == d [ i ] , ) name="Demand(%s ) " % i 10. for j in J : model. add. Constr ( quicksum( x [ i , j ] for i in I ) <= M [ j ] , name="Capacity(%s ) " % j ) 11. model. set. Objective ( quicksum( c [ i , j ] * x [ i , j ] for ( i , j ) in x ) , GRB. MINIMIZE) 9.

4節 1. 2. 3. 4. 5. 6. 輸送問題⑤ model. optimize ( ) print "Optimal value : " , model. Obj. Val EPS = 1. e-6 for ( i , j ) in x : if x [ i , j ]. X > EPS: print " sending quantity %10 s from factory %3 s to customer %3 s " % ( x [ i , j ]. X, j , i )

4節 輸送問題⑥ 実行結果 Optimal value: 3370. 0 sending quantity 230. 0 from factory 2 to customer 3 sending quantity 20. 0 from factory 3 to customer 3 sending quantity 160. 0 from factory 3 to customer 4 sending quantity 270. 0 from factory 2 to customer 2 sending quantity 80. 0 from factory 1 to customer 1 sending quantity 180. 0 from factory 3 to customer 5



5節 双対問題③ 輸送問題のプログラムの最後に次の文を付け加える。 1. 2. 3. print "Const. Name : Slack , Dual" for c in model. get. Constrs ( ) : print "%s : %s , %s " %(c. Constr. Name , c. Slack , c. Pi )

5節 u u u u u 双対問題④ 実行結果 Const. Name: Slack , Dual Demand(1): 0. 000000 , 4. 000000 Demand(2): 0. 000000 , 5. 000000 Demand(3): 0. 000000 , 4. 000000 Demand(4): 0. 000000 , 3. 000000 Demand(5): 0. 000000 , 4. 000000 Capacity(1): 420. 000000 , 0. 000000 Capacity(2): 0. 000000 , -1. 000000 Capacity(3): 140. 000000 , 0. 000000
Non linear quadratic equations
Linear pipeline vs non linear pipeline
Simultaneous equations worksheet
Linear and nonlinear data structure
Linear and nonlinear relationships
Linear multimedia and nonlinear multimedia
What is non linear pharmacokinetics
Linear text to nonlinear text
Linear or nonlinear tables
Non linear text
Difference between linear and nonlinear spatial filters
Linear or nonlinear
Multimedia becomes interactive multimedia when
Linear and nonlinear data structure
Linear and nonlinear tables worksheet
Contoh gaya berpikir linear dan nonlinear
Difference between linear and nonlinear equations
Contoh gaya berpikir linear dan nonlinear
Linear or nonlinear
Linear and nonlinear editing
Linear or nonlinear
What is non linear plot