Linear and nonLinear Dielectric Response of Periodic Systems

  • Slides: 37
Download presentation
Linear and non-Linear Dielectric Response of Periodic Systems from Quantum Monte Carlo Calculations. Paolo

Linear and non-Linear Dielectric Response of Periodic Systems from Quantum Monte Carlo Calculations. Paolo Umari CNR-INFM DEMOCRITOS Theory@Elettra Group Basovizza, Trieste, Italy

In collaboration with: • N. Marzari, Massachusetts Institute of Technology • G. Galli University

In collaboration with: • N. Marzari, Massachusetts Institute of Technology • G. Galli University of California, Davis • A. J. Williamson Lawrence Livermore National Laboratory

Outline Motivations Finite electric fields in QMC with PBCs Results for periodic linear chains

Outline Motivations Finite electric fields in QMC with PBCs Results for periodic linear chains of H 2 dimers: polarizability and second hyperpolarizability

Motivations DFT with GGA-LDA not always reliable for dielectric properties:

Motivations DFT with GGA-LDA not always reliable for dielectric properties:

Motivations… Periodic chains of conjugated polymers, DFT-GGA overestimates: Linear susceptibilities: >~2 times Hyper susceptibilities:

Motivations… Periodic chains of conjugated polymers, DFT-GGA overestimates: Linear susceptibilities: >~2 times Hyper susceptibilities: > orders of magnitude: importance of electronic correlations

Linear and non-linear optical properties of extended systems We want: • Periodic boundary conditions:

Linear and non-linear optical properties of extended systems We want: • Periodic boundary conditions: real extended solids • Accurate many-body description: conjugate polymers • Scalability: large systems Quantum Monte Carlo

Diffusion - QMC • Wavefunction as stochastic density of walker • The sign of

Diffusion - QMC • Wavefunction as stochastic density of walker • The sign of the wavefunction must be known Y • We have errorbars

…. some diffusion-QMC basics • We evolve a trial wave-function into imaginary time: •

…. some diffusion-QMC basics • We evolve a trial wave-function into imaginary time: • At large t, we find the exact ground state: • Usually, importance sampling is used, we evolve f in imaginary time:

…need for a new scheme Static dielectric properties are defined as derivative of the

…need for a new scheme Static dielectric properties are defined as derivative of the system energy with respect to a static electric field for describing extended systems periodic boundary conditions are extremely useful Perturbational approaches can not be (easily) implemented within QMC methods We need: finite electric fields AND periodic boundary conditions

the Method: 1 st challenge In a periodic or extended system the linear electric

the Method: 1 st challenge In a periodic or extended system the linear electric potential is not compatible with periodic boundary conditions ?

The many-body electric enthalpy • We don’t know how to define a linear potential

The many-body electric enthalpy • We don’t know how to define a linear potential with PBCs, but the MTP provides a definition for the polarization: • With the N-body operator: • A legendre transform leads to the electric enthalpy functional: PU & A. Pasquarello PRL 89, 157602 (02); I. Souza, J. Iniguez & D. Vanderbilt PRL 89, 117602(‘ 02) R. Resta, PRL 80, 1800 (‘ 98); R. D. King-Smith & D. Vanderbilt PRB 47, 1651 (‘ 93)

2 nd challenge • We want to minimize the electric enthalpy functional • We

2 nd challenge • We want to minimize the electric enthalpy functional • We need an hermitian Hamiltonian • We obtain a Hamiltonian which depends self-consistently upon the wavefunctions: It’s a self-consistent many-body operator !

Iterative maps in the complex plane • For every H(zi) there is a corresponding

Iterative maps in the complex plane • For every H(zi) there is a corresponding zi+1 • This define a complex-plane map: f(z) • The solution to the self-consistent scheme and the minimum of the electric enthalpy correspond to the fixed point: • Gives access to the polarization in the presence of the electric field : the solution of our problem

3 rd challenge • Without stochastic error an iterative map can lead to the

3 rd challenge • Without stochastic error an iterative map can lead to the fixed point: • In QMC, at every zi in the iterative sequence is associated a stochastic error

. . and solution • We can assume that close to the fixed point,

. . and solution • We can assume that close to the fixed point, the map can be assumed linear: • The average over a sequence of {zi} provides the estimate for the fixed point • The spread of the zi around the fixed point, depends upon the stochastic error:

{zi} series in complex plane • Electric field: 0. 001 a. u. , bond

{zi} series in complex plane • Electric field: 0. 001 a. u. , bond alternation 2. 5 a. u. • 10 iterations of 40 000 time-steps 2560 walkers

Implementation: from DFT to QMC First Step (DFT - HF): Hilbert space single Slater

Implementation: from DFT to QMC First Step (DFT - HF): Hilbert space single Slater determinants: We implemented single-particle electric enthalpy in the quantum-ESPRESSO distribution (publicly available at www. quantum-espresso. org) Second Step (QMC): Wave functions are imported in the CASINO variational and diffusion QMC code, where we coded all the present development (www. tcm. phy. cam. ac. uk/~mdt 26/cqmc. html)

Validation: H atom • We can compare our scheme with a simple sawtooth potential

Validation: H atom • We can compare our scheme with a simple sawtooth potential for an isolated system: polarizability of H atom • Isolated H atom in a sawtooth potential: • Same atom in P. B. C. via our new formulation: Exact:

The true test: periodic H 2 chains 2. a. u. . 2. 5 a.

The true test: periodic H 2 chains 2. a. u. . 2. 5 a. u. 3. a. u. 4. a. u.

Results from quantum chemistry: dependence on correlations Polarizability for 2. 5 a. u. bond

Results from quantum chemistry: dependence on correlations Polarizability for 2. 5 a. u. bond alternation Polarizabiliy per H 2 unit Scaling cost DFT-GGA a=144. 6 N 3, N MP 2 a=58. 0 N 5 CCD a=47. 6 N 5 MP 4 a=53. 6 N 7 CCSD(T) a=50. 6 N 7 Infinite chain limit; quantum chemistry results need to be extrapolated. B. Champagne & al. PRA 52, 1039 (1995)

Results from quantum chemistry: dependence on basis set Second hyper-polarizability for 3. a. u.

Results from quantum chemistry: dependence on basis set Second hyper-polarizability for 3. a. u. bond alternation at MP 3 and MP 4 level Basis set MP 3 MP 4 (6)-31 G 60135± 52 56836± 49 (6)-311 G 64338± 37 61868± 13 (6)-31 G(*)* 65729± 59 65776± 108 (6)-311 G(*)* 73002± 49 74683± 54 Infinite chain limit; quantum chemistry results need to be extrapolated. B. Champagne & D. H. Mosley, JCP 105, 3592 (‘ 96)

QMC treatment • 2. 5, 3. , 4. a. u. bond alternation • Nodal

QMC treatment • 2. 5, 3. , 4. a. u. bond alternation • Nodal surface and trial wavefunction from HF • HF wfcs calculated in the presence of electric field

Convergence with respect to supercell size Results from HF, 3. a. u. bond alternation

Convergence with respect to supercell size Results from HF, 3. a. u. bond alternation 10 units 20 units QC extrapolations a 27. 8 28. 5 28. 6 g(/1000. ) 57. 1 56. 7 We will consider 10 -H 2 periodic units cells

Test on linearity of f(z) • bond alternation 2. 5 a. u. , electric

Test on linearity of f(z) • bond alternation 2. 5 a. u. , electric field 0. 003 a. u. • 2560 walkers 120 000 time steps / iteration • 2560 walkers 40 000 time steps / iteration

Diffusion QMC results: 3. a. u. bond alternation • We apply electric fields of:

Diffusion QMC results: 3. a. u. bond alternation • We apply electric fields of: 0. 003 a. u. , 0. 02 a. u. a = 27. 0 +/- 0. 5 a. u. • a=26. 5 a. u. MP 4 From Q. C. extrapolations: • a=25. 7 a. u. CCSD(T) g = 89. 8 +/- 6. 1 a. u. (*103) From Q. C. extrapolations: • g >74. 7 a. u. (*103) MP 4

Diffusion QMC results: 2. 5 a. u. bond alternation • We apply electric fields

Diffusion QMC results: 2. 5 a. u. bond alternation • We apply electric fields of: 0. 003 a. u. , 0. 01 a. u. a = 50. 6 +/- 0. 3 a. u. • a=53. 6 a. u. MP 4 From Q. C. extrapolations: • a=50. 6 a. u. CCSD(T) g = 651. 9 +/- 29. 9 a. u. (*103)

Diffusion QMC results: 4. a. u. bond alternation • We apply electric fields of:

Diffusion QMC results: 4. a. u. bond alternation • We apply electric fields of: 0. 01 a. u. , 0. 03 a. u. a = 16. 0 +/- 0. 1 a. u. • a=15. 8 a. u. MP 4 From Q. C. extrapolations: • a=15. 5 a. u. CCSD(T) g = 16. 5 +/- 0. 6 a. u. (*103)

Effects of correlation: polarizability Exchange is the most important contribution

Effects of correlation: polarizability Exchange is the most important contribution

Effects of correlation: 2 nd hyperpolarizability Correlations are important!!

Effects of correlation: 2 nd hyperpolarizability Correlations are important!!

Conclusions • Novel approach for dielectric properties via QMC • Implemented via diffusion QMC

Conclusions • Novel approach for dielectric properties via QMC • Implemented via diffusion QMC • Validated in periodic hydrogen chains: very nice agreement with the best quantum chemistry results • PRL 95, 207602 (‘ 05)

Perspectives… • “Linear scaling” • Testing critical cases • understanding polarization effects in DFT

Perspectives… • “Linear scaling” • Testing critical cases • understanding polarization effects in DFT • . .

Acknowledgments • For the QMC CASINO software: M. D. Towler and R. J. Needs,

Acknowledgments • For the QMC CASINO software: M. D. Towler and R. J. Needs, University of Cambridge • For HF applications: S. de Gironcoli, Sissa, Trieste • For money: DARPA-PROM

Importance of nodal surface: from DFT Bond alternation 2. 5 a. u. • For

Importance of nodal surface: from DFT Bond alternation 2. 5 a. u. • For 10 -H 2: a. DMC= 52. 2 +/- 1. 3 a. u. a. GGA= 102. 0 a. u. • For 16 -H 2: a. DMC= 55. 4 +/- 1. 2 a. u. a. GGA= 123. 4 a. u. • For 22 -H 2: a. DMC= 53. 4 +/- 1. 1 a. u. a. GGA= 133. 5 a. u. From nodal surface HF: a. DMC= 50. 6 +/- 0. 3 a. u.

Electronic localization for H 2 periodic chain: • Localization spread: (Resta & Sorella, PRL

Electronic localization for H 2 periodic chain: • Localization spread: (Resta & Sorella, PRL ’ 99) • For GGA-DFT: • For DMC-QMC:

Finite electric fields in DFT with finite field Si (8 atoms 4 X 4

Finite electric fields in DFT with finite field Si (8 atoms 4 X 4 X 10 kpoints): Solution for single particle Hamitonian: Umari & Pasquarello PRL 89, 157602 (’ 02) Souza, Iniguez & Vanderbilt PRL 89, 117602 (’ 02)

…DFT-Molecular Dynamics with electric fields: • Possible applications: • Static Dielectric properties of liquids

…DFT-Molecular Dynamics with electric fields: • Possible applications: • Static Dielectric properties of liquids at finite temperature, (Dubois, PU, Pasquarello, Chem. Phys. Lett. ’ 04) • Dielectric properties of iterfaces (Giustino, PU, Pasquarello, PRL’ 04) • Infrared spectra of large systems • Non-resonant Raman and Hyper-Raman spectra of large systems (Giacomazzi, PU, Pasquarello, PRL’ 05; PU, Pasquarello, PRL’ 05)

Sampling ei. GX in diffusion QMC • ei. GX does not commute with the

Sampling ei. GX in diffusion QMC • ei. GX does not commute with the Hamiltonian: we use forward walking • Observable are samples after a projection time t (Hammond, Lester & Reynolds ’ 94)