Linac Coherent Light Source LCLS Low Level RF

  • Slides: 73
Download presentation
Linac Coherent Light Source (LCLS) Low Level RF System Injector Turn-on December 2006 April

Linac Coherent Light Source (LCLS) Low Level RF System Injector Turn-on December 2006 April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Safety First and Second and Third…. . to Infinity Hazards in the LLRF system

Safety First and Second and Third…. . to Infinity Hazards in the LLRF system RF 1 k. W at 120 Hz at 5 u. S = 0. 6 Watts average, 2 Watt average amps at 2856 MHz, 60 W average amps at 476 MHz Hazards – RF Burns Mitigation – Avoid contact with center conductor of energized connectors. All employees working with LLRF systems are required to have the proper training. 110 VAC Connector Hazards - Shock Mitigation - Don’t touch conductors when plugging into outlet. All chassis are inspected by UL trained inspector. April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Scope of Work – Injector Turn-on Linac Sector 0 RF Upgrade WBS 1. 02.

Scope of Work – Injector Turn-on Linac Sector 0 RF Upgrade WBS 1. 02. 04. 03. 01 All 3 RF Chassis completed and Installed Control Module ready for test – John Dusatko Sector 20 RF distribution system WBS 1. 02. 04. 03. 02 Phase and Amplitude Controllers (PAC) – 6 units in Design Phase and Amplitude Detectors (PAD) – 1 unit in Design Phased Locked Oscillator – Use SPPS unit for Turn On LO Generator – Design 90% Complete and tested Multiplier – 476 MHz to 2856 MHz – Complete 4 distribution chassis - Complete Laser Phase Measurement – in Design – not required for turn on LLRF Control and Monitor System WBS 1. 02. 04. 03 1 k. W Solid State S-Band Amplifiers – 5 units – in Fab, 2 done PAD – 12 units as above in design PAC – 6 units as above in design Bunch Length Monitor Interface – awaiting Specs Beam Phase Cavity WBS 1. 02. 04. 03. 04 Will use single channel of PAD Chassis Pill box cavity with 2 probes and 4 tuners - Complete next month April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

LCLS Layout P. Emma April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac.

LCLS Layout P. Emma April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

LLRF Control system spans Sector 20 off axis injector to beyond Sector 30 April

LLRF Control system spans Sector 20 off axis injector to beyond Sector 30 April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

LCLS RF Jitter Tolerance Budget Lowest Noise Floor Requirement 0. 5 deg X-Band =

LCLS RF Jitter Tolerance Budget Lowest Noise Floor Requirement 0. 5 deg X-Band = 125 f. S Structure Fill time = 100 n. S Noise floor = -111 d. Bc/Hz @ 11 GHz 10 MHz BW -134 d. Bc/Hz @ 476 MHz 0. 50 X-band XRMS tolerance budget for <12% rms peak-current jitter or <0. 1% rms final e− energy jitter. All tolerances are rms levels and the voltage and phase tolerances per klystron for L 2 and L 3 are Nk larger, assuming uncorrelated errors, where Nk is the number of klystrons per linac. P. Emma April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Slow Drift Tolerance Limits (Top 4 rows for De/e < 5%, bottom 4 limited

Slow Drift Tolerance Limits (Top 4 rows for De/e < 5%, bottom 4 limited by feedback dynamic range) Gun-Laser Timing Bunch Charge Gun RF Phase Gun Relative Voltage L 0, 1, X, 2, 3 RF Phase (approx. ) L 0, 1, X, 2, 3 RF Voltage (approx. ) (Tolerances are peak values, not rms) 2. 4* 3. 2 2. 3 0. 6 5 5 deg-S % P. Emma, J, Wu * for synchronization, this tolerance might be set to 1 ps (without arrival-time measurement) April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Linac Sector 0 RF Upgrade LCLS must be compatible with the existing linac operation

Linac Sector 0 RF Upgrade LCLS must be compatible with the existing linac operation including PEP timing shifts Master Oscillator is located 1. 3 miles from LCLS Injector 1. 3 Miles to LCLS Injector Measurements on January 20, 2006 at Sector 21 show 30 f. S rms jitter in a bandwidth from 10 Hz to 10 MHz PEP PHASE SHIFT ON MAIN DRIVE LINE April 20, 2006 LCLS LLRF MDL RF with TIMING Pulse – Sync to DR Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Linac Sector 0 RF Upgrade Status New Low Noise Master Oscillator – Done New

Linac Sector 0 RF Upgrade Status New Low Noise Master Oscillator – Done New Low Noise PEP Phase Shifter RF Chassis – Done Control Chassis – In Test New Low Noise Master Amplifier – Done Main Drive Line Coupler in Sector 21 – Done Measurements Noise floor on 476 MHz of -156 d. Bc/Hz Integrated jitter from 10 Hz to 10 MHz of 30 f. S April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Sector 20 RF Distribution Phase Critical Cables Laser <140 ft < 700 f. Spp

Sector 20 RF Distribution Phase Critical Cables Laser <140 ft < 700 f. Spp Gun < 100 ft < 400 f. Spp April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Sector 20 RF Distribution System Status Phase Locked Oscillator – 476 MHz Initial Turn

Sector 20 RF Distribution System Status Phase Locked Oscillator – 476 MHz Initial Turn On use SPPS Oscillator May modify control to achieve better stability during 2007 LO Generator – 2830. 5 MHz Design complete – Prototype tested – 25 MHz SSB modulator board done 2856 MHz IQ Modulator prototype near completion Multipliers - 476 MHz to 2856 MHz – Done Phase and Amplitude Control (PAC) Unit In Design – IQ Modulators and Amplifiers selected – See Next Section Phase and Amplitude Detector (PAD) Unit In Design – Testing Mixers, Amplifiers, Filters – See Next Section Amplifiers – not ordered yet Laser Phase Measurement System – Design Started April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

LLRF Control System Distributed Control System Microcontroller based IOC Control and Detector Modules Ethernet

LLRF Control System Distributed Control System Microcontroller based IOC Control and Detector Modules Ethernet Switch Central Feedback Computer April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

LLRF Control and Monitor System Klystron Station April 20, 2006 LCLS LLRF Ron Akre,

LLRF Control and Monitor System Klystron Station April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

LLRF Control and Monitor System Status 1 k. W Solid State S-Band Amplifiers –

LLRF Control and Monitor System Status 1 k. W Solid State S-Band Amplifiers – 5 units 1 k. W amplifier modules currently in test Existing amplifier support design under review Phase and Amplitude Detectors – 11 dual chan units Preliminary Design Complete Evaluating amplifiers, mixers, and filters Phase and Amplitude Controllers – 6 single chan units Preliminary design complete Evaluating mixers and amplifiers Bunch Length Monitor Interface Need Specifications April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Beam Phase Cavity Status Measurement of beam phase to RF reference phase. The result

Beam Phase Cavity Status Measurement of beam phase to RF reference phase. The result will be used to correct timing of laser to RF reference. Cavity is located between L 0 A and L 0 B. Electronics will use single channel of PAD Chassis Pill box cavity with 2 probes and 4 tuners Cavity Electronics will use single channel of RF Monitor Cavity in fabrication Complete – May 2006 Bake – June 2006 April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Controls Engineering Requirements When beam is present, control will be done by beam-based longitudinal

Controls Engineering Requirements When beam is present, control will be done by beam-based longitudinal feedback (except for Tcavs); when beam is absent, control will be done by local phase and amplitude controller (PAC) Adhere to LCLS Controls Group standards: RTEMS, EPICS, Channel Access protocol Ref: Why RTEMS? Study of open source real-time OS Begin RF processing of high-powered structures June 2006 April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

External Interfaces LLRF to LCLS global control system PVs available for edm screens, archiving,

External Interfaces LLRF to LCLS global control system PVs available for edm screens, archiving, etc over controls network LLRF VME to beam-based longitudinal feedback from feedback: phase and amplitude corrections at 120 Hz over private ethernet from LLRF: phase and amplitude values (internal) LLRF VME to LLRF microcontrollers from VME: triggers, corrected phase and amplitude from microcontrollers: phase and amplitude averaged values at 120 Hz, raw phase and amplitude values for diagnostics April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Sector 20 PAC and PAD Control VME IOC Ethernet Switch Arcturus Coldfire 13 PADs

Sector 20 PAC and PAD Control VME IOC Ethernet Switch Arcturus Coldfire 13 PADs FIFO ADC 13 PACs FPGA DAC April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

EPICS PANELS Single Pulse Diagnostic Panels for PADs are Running Remaining Software History Buffer

EPICS PANELS Single Pulse Diagnostic Panels for PADs are Running Remaining Software History Buffer Select PVs Multi pulse data analysis, correlation plots Local RF Feedback loops Links to global Feedback loops April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

RF Status Summary Linac New Low Noise Source – RF components installed, Controls Feb

RF Status Summary Linac New Low Noise Source – RF components installed, Controls Feb 06 RF Distribution – Prototyping underway (R. Akre, B. Hong, H. Schwarz) Monitor Controller Board (J. Gold, R. Akre, Till Straumann) Single channel prototype for ADS 5500 tested to specifications Four channel ADS 5500 board – layout complete (SNR 70 d. BFS) Switched to LTC 2208 16 bit 130 MSPS ADC (Prototype in test) (SNR 77 d. BFS) RF Monitor Board in preliminary design (H. Schwarz, B. Hong) Testing mixers Control Boards (J. Olsen) Fast Control Board – All but slow ADCs for temp and voltages tested and low level drivers written Slow control board – use fast board RF Control Board in preliminary design (H. Schwarz, B. Hong) Software (D. Kotturi, Till Straumann) EPICS on RTEMS on Microcontroller done Drivers – data collection interrupt routine done Algorithms – PAD 90% complete PAC in progress Calibration routines – Need specifications Collision free Ethernet April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

LLRF Schedule RF Distribution Design Complete May 2006 RF Hut Distribution System installed August

LLRF Schedule RF Distribution Design Complete May 2006 RF Hut Distribution System installed August 2006 PAC design Complete June 2006 PAD design Complete July 2006 PAC and PAD minimal operational software complete Ethernet testing with multiple PACs and PADs? ? ? Single S-Band station – hardware installed Sept 2006 4 other S-Band Stations – November 2006 Feedback software interfacing? ? ? Test and debug with Klystrons On – December 2006 X-Band Station January 2007 April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

End of LLRF RF Talk Backup for RF Talk Mostly Correct April 20, 2006

End of LLRF RF Talk Backup for RF Talk Mostly Correct April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

DESIGN PHILOSOPHY Reliability is inversely proportional to the number of connectors. Stability is inversely

DESIGN PHILOSOPHY Reliability is inversely proportional to the number of connectors. Stability is inversely proportional to the number of connectors. Measurement accuracy is inversely proportional to the number of connectors and the amount of Teflon, which is typically found in connectors. Cost of maintenance is proportional to the number of connectors. April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Electro-Optical Sampling 200 mm thick Zn. Te crystal Single-Shot e- Timing Jitter (20 Shots)

Electro-Optical Sampling 200 mm thick Zn. Te crystal Single-Shot e- Timing Jitter (20 Shots) <300 fs Ti: Sapphire laser e- temporal information is encoded on transverse profile of laser beam 170 fs rms Adrian Cavalieri et al. , U. Mich. April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

MPS – PPS Issues Addressed by Controls Group Not Reviewed Here Vacuum New vacuum

MPS – PPS Issues Addressed by Controls Group Not Reviewed Here Vacuum New vacuum system summary to be fed to each klystron existing MKSU. PPS System Injector modulators will be interlocked by Injector PPS system. PPS requirements for radiation from the injector transverse accelerator needs to be determined. Radiation levels will be measured during testing in the Klystron Test Lab – Feb 06. April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Bandwidth of S-Band System Upper Frequency Limit – 10 MHz Beam-RF interaction BW due

Bandwidth of S-Band System Upper Frequency Limit – 10 MHz Beam-RF interaction BW due to structure fill time < 1. 5 MHz S-Band Accelerators and Gun ~10 MHz X-Band S-Band T Cav Structure RF Bandwidth ~ 16 MHz 5045 Klystron ~ 10 MHz Lower Frequency Limit – 10 k. Hz Fill time of SLED Cavity = 3. 5 u. S about 100 k. Hz Laser – Needs to be measured ~ 10 k. Hz April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Noise Levels RF Reference Single Side Band (SSB) Noise Floor 2856 MHz RF Distribution

Noise Levels RF Reference Single Side Band (SSB) Noise Floor 2856 MHz RF Distribution -144 d. Bc/Hz -174 d. Bc/Hz @ 119 MHz (24 x = +28 d. B +2 for multiplier) 2830. 5 MHz Local Oscillator -138 d. Bc/Hz Integrated Noise -138 d. Bc/Hz at 10 MHz = -65 d. Bc = 32 f. S rms SNR = 65 d. B for phase noise Added noise from MIXER (LO noise same as RF) SNR of 62 d. B ADC noise levels SNR of 70 d. B – 14 bit ADS 5500 at 102 MSPS April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Phase Noise – Linac Sector 0 OLD MASTER OSCILLATOR -133 d. Bc/Hz at 476

Phase Noise – Linac Sector 0 OLD MASTER OSCILLATOR -133 d. Bc/Hz at 476 MHz 340 f. Srms jitter in 10 MHz BW NEW MASTER OSCILLATOR -153 d. Bc/Hz at 476 MHz 34 f. Srms jitter in 10 MHz BW Integrated Noise - Timing Jitter fs rms Integral end Integral start Aug 17, 2004 Sector 30 Jan 20, 2006 Sector 21 April 20, 2006 LCLS LLRF 5 MHz 1 M 1 k 10 k. Hz 100 k 10 27 30 33 38 75 82 15 19 20 20 8 17 Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Sector 20 RF Distribution Cable Errors Temperature Coefficient of 2. 8 ppm/ºF and Cable

Sector 20 RF Distribution Cable Errors Temperature Coefficient of 2. 8 ppm/ºF and Cable length is 1200ºS/ft All Cables except LASER are less than 100 ft Distances feet and errors in degrees S total range RF Hut Down Linac Wall Injector Total Unit Ft deg. S ft deg. S Deg. S Laser 8 0. 054 25 0. 017 10 0. 014 10 0. 007 85 0. 58 0. 68 Gun 8 0. 054 25 0. 017 10 0. 014 10 0. 007 40 0. 27 0. 37 L 0 -A 8 0. 054 25 0. 017 10 0. 014 10 0. 007 30 0. 21 0. 31 B Phas 8 0. 054 25 0. 017 10 0. 014 10 0. 007 20 0. 14 0. 24 L 0 -B 8 0. 054 25 0. 017 10 0. 014 10 0. 007 20 0. 14 0. 24 L 0 -T 8 0. 054 25 0. 017 10 0. 014 10 0. 007 10 0. 07 0. 17 L 1 -S 8 0. 054 25 0. 017 50 0. 068 0. 14 L 1 -X 8 0. 054 25 0. 017 60 0. 081 0. 16 Temperature Variations: RF Hut ± 1ºF : Penetration ± 0. 1ºF : Linac : ± 0. 2ºF Shield Wall ± 0. 1ºF : Injector ± 1ºF April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

RF System Topology / Specifications April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi

RF System Topology / Specifications April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

RF Monitor Signal Counts ADC Chan Cnt Distribution (5~2850 MHz, 4<500 MHz) RF Gun

RF Monitor Signal Counts ADC Chan Cnt Distribution (5~2850 MHz, 4<500 MHz) RF Gun Beam Phase Cavity L 0 -A Accelerator L 0 -B Accelerator L 0 -T Transverse Accelerator L 1 -S Station 21 -1 B, C, and D Acc L 1 -X X-Band accelerator X-Band S 25 -Tcav S 24 -1, 2, & 3 Feedback S 29 and S 30 Feedback Total Chassis Total into Hut IOC April 20, 2006 LCLS LLRF 4 9 2 4 4 4 6 5 4 0 0 Chassis Count/Location 1 Kly 1 Kly 7 Kly 12 Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu 1 Hut 1. 5 Hut 0. 5 Hut 1. 0 Hut 0. 5 Hut 6 Hut

RF Control Signal Counts Distribution (3~2850 MHz, 3<500 MHz) RF Gun Beam Phase Cavity

RF Control Signal Counts Distribution (3~2850 MHz, 3<500 MHz) RF Gun Beam Phase Cavity L 0 -A Accelerator L 0 -B Accelerator L 0 -T Transverse Accelerator L 1 -S Station 21 -1 B, C, and D accelerators L 1 -X X-Band accelerator X-Band S 25 -Tcav S 24 -1, 2, & 3 Feedback S 29 and S 30 Feedback Total modulators Totals at ~2856 MHz Total into Hut IOC April 20, 2006 LCLS LLRF 11 Fast 6 IQ Mod 1 Klystron 1 IQ mod 1 Klystron 1 IQ Mod 1 Klystron 3 Klystrons 2 IQ modulators 476 MHz 8 Slow 19 modulators 14 modulators Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

LLRF Control and Monitor System 1 k. W Solid State S-Band Amplifiers – 5

LLRF Control and Monitor System 1 k. W Solid State S-Band Amplifiers – 5 units Phase and Amplitude Monitors – 12 units Phase and Amplitude Controllers – 6 units Bunch Length Monitor Interface – Need Specifications April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

RF Control Required 13 Units Includes Distribution RF Control Module consist of the following:

RF Control Required 13 Units Includes Distribution RF Control Module consist of the following: Input Coupler, IQ Modulator, Amplifier, Output Coupler Filters for I and Q inputs April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

RF Monitor Required 13 Chassis for Injector – Includes Distribution LO 2830. 5 MHz

RF Monitor Required 13 Chassis for Injector – Includes Distribution LO 2830. 5 MHz : RF 2856 MHz IF 25. 5 MHz (8. 5 MHz x 3 in sync with timing fiducial) Double-Balanced Mixer IF to Amp and then Low Pass Filter output to ADC sampling at 102 MSPS 2830. 5 MHz Local Osc. To ADC LTC 2208 SNR = 77 d. BFS 2856 MHz RF Signal April 20, 2006 LCLS LLRF 102 MSPS Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

1 k. W Solid State S-Band Amplifiers Design Complete Two Units on the Shelf

1 k. W Solid State S-Band Amplifiers Design Complete Two Units on the Shelf Modules in house – and tested Support parts – Some parts in house Power Supplies, relays, chassis on order April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

SLAC Linac RF – New Control The new control system will tie in to

SLAC Linac RF – New Control The new control system will tie in to the IPA Chassis with 1 k. W of drive power available. Reference will be from the existing phase reference line or the injector new RF reference Existing System April 20, 2006 LCLS LLRF I and Q will be controlled with a 16 bit DAC running at 119 MHz. Waveforms to the DAC will be set in an FPGA through a microcontroller running EPICS on RTEMS. Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Controls Talk April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu,

Controls Talk April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

LLRF Controls Outline Requirements External Interfaces Schedule Date Needed Prototype Completion Date Hardware Order

LLRF Controls Outline Requirements External Interfaces Schedule Date Needed Prototype Completion Date Hardware Order Date Installation Test Period Design Maturity (what reviews have been had) State of Wiring Information State of Prototype April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Requirements At 120 Hz, meet phase/amp noise levels defined as: 0. 1% rms amplitude

Requirements At 120 Hz, meet phase/amp noise levels defined as: 0. 1% rms amplitude 100 fs rms in S-band (fill time = 850 ns) 125 fs rms in X-band (fill time = 100 ns) All tolerances are rms levels and the voltage and phase tolerances per klystron for L 2 and L 3 are Nk larger, assuming uncorrelated errors, where Nk is the number of klystrons per linac (L 2 has 28; L 3 has 48) April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Engineering Requirements When beam is present, control will be done by beam-based longitudinal feedback

Engineering Requirements When beam is present, control will be done by beam-based longitudinal feedback (except for Tcavs); when beam is absent, control will be done by local phase and amplitude controller (PAC) Adhere to LCLS Controls Group standards: RTEMS, EPICS, Channel Access protocol Ref: Why RTEMS? Study of open source real-time OS Begin RF processing of high-powered structures May 20, 2006 April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

External Interfaces LLRF to LCLS global control system PVs available for edm screens, archiving,

External Interfaces LLRF to LCLS global control system PVs available for edm screens, archiving, etc over controls network LLRF VME to beam-based longitudinal feedback from feedback: phase and amplitude corrections at 120 Hz over private ethernet from LLRF: phase and amplitude values (internal) LLRF VME to LLRF microcontrollers from VME: triggers, corrected phase and amplitude from microcontrollers: phase and amplitude averaged values at 120 Hz, raw phase and amplitude values for debug April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

External Interfaces: Laser - Tcav April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi

External Interfaces: Laser - Tcav April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

External Interfaces: L 2 -L 3 April 20, 2006 LCLS LLRF Ron Akre, Dayle

External Interfaces: L 2 -L 3 April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Design maturity (what reviews have been had): RF/Timing Design, DOE Review, August 11, 2004

Design maturity (what reviews have been had): RF/Timing Design, DOE Review, August 11, 2004 Akre_FAC_Oct 04_RF_Timing, FAC Review, October, 2004 Low Level RF Controls Design, LCLS Week, January 25 -27, 2005 Low Level RF, Lehman Review, May 10 -12, 2005 LLRF Plans for Development and Testing of Controls, LCLS Week, July 21, 2005 Low Level RF Design, Presentation for Controls Group, Sept. 13, 2005 LLRF Preliminary Design review, SLAC, September 26, 2005 LCLS LLRF Control System - Kotturi, LLRF Workshop, CERN, October 10 -13, 2005 LCLS LLRF System - Hong, LLRF Workshop, CERN, October 10 -13, 2005 LLRF and Beam-based Longitudinal Feedback Readiness - Kotturi/Akre, LCLS Week, SLAC, October 24 -26, 2005 LCLS Week LLRF and feedback - Kotturi/Allison, LCLS Week, SLAC, October 24 -26, 2005 LLRF, LCLS System Concept Review/Preliminary Design Review, SLAC, November 16 -17, 2005 Comments LLRF Beam Phase Cavity Preliminary Design review, SLAC, November 30, 2005 Docs at: http: //www. slac. stanford. edu/grp/lcls/controls/global/subsystems/llrf State of wiring: percent complete Captar input will be given at time of presentation State of prototype: PAD (1 chan ADC) and PAC boards built (shown on next pages). Testing. April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

PAD – the monitor board April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi

PAD – the monitor board April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

PAD – the monitor board April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi

PAD – the monitor board April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

PAC – the control board April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi

PAC – the control board April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

PAC – the control board April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi

PAC – the control board April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Additional Slides The following two pages show an overview of the LLRF control modules.

Additional Slides The following two pages show an overview of the LLRF control modules. From these diagrams, counts of module types, as well as function and location are seen. April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Overview of LLRF at Sector 20 April 20, 2006 LCLS LLRF Ron Akre, Dayle

Overview of LLRF at Sector 20 April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Overview of LLRF at Sector 24 April 20, 2006 LCLS LLRF Ron Akre, Dayle

Overview of LLRF at Sector 24 April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Beam Phase Monitor R. Akre A. Haase B. Hong D. Kotturi V. Pacak H.

Beam Phase Monitor R. Akre A. Haase B. Hong D. Kotturi V. Pacak H. Schwarz Preliminary Design Review November 30, 2005 April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Outline • Purpose • Specifications • System outline • Cavity • Noise Levels •

Outline • Purpose • Specifications • System outline • Cavity • Noise Levels • Analysis • Long Term Drifts • Summary April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Laser Timing Stabilization Feedback Beam timing information from the beam phase monitor will be

Laser Timing Stabilization Feedback Beam timing information from the beam phase monitor will be used to apply corrections to the timing of the laser on the RF Gun. April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Specifications §Short term (2 second) timing jitter: 100 f. S rms §Long term (4

Specifications §Short term (2 second) timing jitter: 100 f. S rms §Long term (4 day) timing jitter: ± 1 p. S §Range of the above accuracies is ± 10 p. S §Data available at 120 Hz April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

System Outline April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu,

System Outline April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Cavity Frequency = 2856 MHz Q = 6000 Time Constant = 700 n. S

Cavity Frequency = 2856 MHz Q = 6000 Time Constant = 700 n. S Temperature Coefficient = 50 k. H/°C April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

System Critical Noise Levels and Bandwidths Cavity Signal – Bandwidth 500 k. Hz Local

System Critical Noise Levels and Bandwidths Cavity Signal – Bandwidth 500 k. Hz Local Oscillator – Noise Floor – 143 d. Bc/Hz IF Filter – Bandwidth 4 MHz ADC – SNR at input 76 d. B April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

System Critical Noise Levels and Bandwidths April 20, 2006 LCLS LLRF Ron Akre, Dayle

System Critical Noise Levels and Bandwidths April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

ADC Linear Technologies LTC 2208 16 Bit 130 MHz April 20, 2006 Ron Akre,

ADC Linear Technologies LTC 2208 16 Bit 130 MHz April 20, 2006 Ron Akre, Dayle Kotturi SNR 77. 6 d. BFS 30 MHz in Clock 130 MHz SFDR 95 d. B akre@slac. stanford. edu, dayle@slac. stanford. edu LCLS LLRF

Phase Analysis Time Calculated Beam Phase at Beam Time April 20, 2006 LCLS LLRF

Phase Analysis Time Calculated Beam Phase at Beam Time April 20, 2006 LCLS LLRF Measured Data Point 1 Measured Data Point 2 Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

I & Q from Waveform Digital Down Mixing and Normalization Digitized Input Signal April

I & Q from Waveform Digital Down Mixing and Normalization Digitized Input Signal April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Optimization Optimal Points to use for analysis is 16 point average at points 18

Optimization Optimal Points to use for analysis is 16 point average at points 18 and 120 April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Analysis Results Standard deviation of result = 1. 1 e-4 or 6. 3 f.

Analysis Results Standard deviation of result = 1. 1 e-4 or 6. 3 f. S rms jitter Signal level 20 d. B lower will give 63 f. S rms jitter Sensitivity to frequency change = 0. 6 f. S/2. 8 k. H freq change Sensitivity to timing change over +-10 deg = 1: 1 April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Long Term Drifts 80 ft (1 M deg) of ½ inch superflex has TC

Long Term Drifts 80 ft (1 M deg) of ½ inch superflex has TC of 4 ppm/deg. C Water temp tolerance is +-0. 1 deg. F = +-400 f. S drift April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Summary §Short term (2 second) timing jitter: 100 f. S rms § 63 f.

Summary §Short term (2 second) timing jitter: 100 f. S rms § 63 f. S rms §Long term (4 day) timing jitter: ± 1 p. S §± 0. 8 p. S §Range of the above accuracies is ± 10 p. S §Results §Data available at 120 Hz §Simple algorithm in integer arithmetic will allow this April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Feedback Page 1 LOCAL FEEDBACK April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi

Feedback Page 1 LOCAL FEEDBACK April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Feedback Page 2 GLOBAL FEEDBACK LOCAL FEEDBACK April 20, 2006 LCLS LLRF Ron Akre,

Feedback Page 2 GLOBAL FEEDBACK LOCAL FEEDBACK April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Feedback Page 3 GLOBAL FEEDBACK LOCAL FEEDBACK April 20, 2006 LCLS LLRF Ron Akre,

Feedback Page 3 GLOBAL FEEDBACK LOCAL FEEDBACK April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Feedback Page 4 April 20, 2006 LCLS LLRF GLOBAL FEEDBACK Ron Akre, Dayle Kotturi

Feedback Page 4 April 20, 2006 LCLS LLRF GLOBAL FEEDBACK Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Feedback Page 5 GLOBAL FEEDBACK April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi

Feedback Page 5 GLOBAL FEEDBACK April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu

Feedback Page 6 April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford.

Feedback Page 6 April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi akre@slac. stanford. edu, dayle@slac. stanford. edu