Light SCN direct via the retinohypothalamic RHT pathway

  • Slides: 20
Download presentation
Light →SCN: -direct via the retinohypothalamic (RHT) pathway -indirect via geniculohypothalamic (GHT) pathway

Light →SCN: -direct via the retinohypothalamic (RHT) pathway -indirect via geniculohypothalamic (GHT) pathway

SCN: some morphological features • Parvocellular, paired structure, ~16 -20, 000 neurons in rodent,

SCN: some morphological features • Parvocellular, paired structure, ~16 -20, 000 neurons in rodent, miniscule in man • Phenotypes: multiple potential transmitters – most express GABA (1993 proposal: SCN output is inhibitory) – Peptides: • vasoactive intestinal peptide (VIP) in cells in ventrolateral part; receives retinal input; forms part of the output projection • vasopressin (VP) in cells in dorsomedial part; forms part of the output projection • somatostatin (SS) in cells whose axons remain intrinsic to SCN

Lets consider the neural connections of SCN A schematic outline from Ibata et al

Lets consider the neural connections of SCN A schematic outline from Ibata et al Frontiers in Neuroendocrinology 20: 241 -268, 1999

Notes: 1 -Based on immunocytochemical grounds, SCN can be subdivided into dorsomedial (shell) and

Notes: 1 -Based on immunocytochemical grounds, SCN can be subdivided into dorsomedial (shell) and ventrolateral (core) segments 2 -Retinal input is to the VIPergic neurons in the ventrolateral SCN 3 -output pathways arise from both VIPergic and vasopressinergic neurons in SCN 4 -most projections are local, to hypothalamic sites (exceptions: LGB, TPV)

SCN: techniques to define inputoutput pathways • Using retrograde and/or anterograde transport of suitable

SCN: techniques to define inputoutput pathways • Using retrograde and/or anterograde transport of suitable markers e. g. wheat germ agglutin (WGA)

SCN: techniques to define inputoutput pathways • Using retrograde and anterograde transport of suitable

SCN: techniques to define inputoutput pathways • Using retrograde and anterograde transport of suitable markers e. g. WGA • Using viral retrograde transneuronal traceing (pseudorabies)

Retrograde transneuronal labeling with pseudorabies virus (PRV) injected in the adrenal gland

Retrograde transneuronal labeling with pseudorabies virus (PRV) injected in the adrenal gland

SCN: techniques to define inputoutput pathways • Using retrograde and/or anterograde transport of suitable

SCN: techniques to define inputoutput pathways • Using retrograde and/or anterograde transport of suitable markers e. g. WGA • Using viral retrograde transneuronal tracing (PRV) • Using double label immunocytochemistry to define phenotype (peptides)

PRV (green) A-C: in PVN oxytocin (red) D-E: in SCN vasopressin (red) F: in

PRV (green) A-C: in PVN oxytocin (red) D-E: in SCN vasopressin (red) F: in SCN VIP (red)

 Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway European

Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway European Journal of Neuroscience 11: 15351544, 1999 RM Buijs, J Wortel, JJ van Heerikhuize, MGP Feenstra, GJ Ter Horst, HJ Romijn, A Kalsbeek

Suprachiasmatic nucleus (SCN) • Brain Res. 1972 Jul 13; 42(1): 201 -6. – Loss

Suprachiasmatic nucleus (SCN) • Brain Res. 1972 Jul 13; 42(1): 201 -6. – Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Moore RY, Eichler VB.