Light and Optics Chapter 22 23 Light and

  • Slides: 40
Download presentation
Light and Optics Chapter 22 -23 Light and Color § 22. 2 -. 3

Light and Optics Chapter 22 -23 Light and Color § 22. 2 -. 3 Reflection and Refraction § 22. 4 -. 5 Internal Reflection and Dispersion § 23. 1 -. 3 Mirrors, Lenses, and Images § 23. 3 Optical Systems

Chapter 22 Objectives 1. Describe the functions of convex and concave lenses, a prism,

Chapter 22 Objectives 1. Describe the functions of convex and concave lenses, a prism, and a flat mirror. 2. Describe how light rays form an image. 3. Calculate the angles of reflection and refraction for a single light ray. 4. Draw the ray diagram for a lens and a mirror showing the object and image. 5. Explain how a fiber-optic circuit acts like a pipe for light. 6. Describe the difference between a real image and a virtual image and give an example of each.

Chapter 17 Vocabulary Terms § § § § lens mirror prism optics geometric optics

Chapter 17 Vocabulary Terms § § § § lens mirror prism optics geometric optics specular reflection diffuse converging diverging law of reflection normal line ray diagram magnification object § § § index of refraction focal point focal length optical axis light ray magnification critical angle Snell’s law real image virtual image chromatic aberration § refraction § fiber optics § dispersion § magnifying glass § spherical aberration § reflection § diffraction § telescope § focus § total internal reflection § resolution § pixel image § focal plane § thin lens formula

22. 1 Reflection and Refraction § Key Question: How do we describe the reflection

22. 1 Reflection and Refraction § Key Question: How do we describe the reflection and refraction of light?

17. 1 Reflection and Refraction § Optics is the study of how light behaves.

17. 1 Reflection and Refraction § Optics is the study of how light behaves. § Optics focused on the creation of images is called geometric optics. — because it is based on relationships between the angles and lines describing light rays.

22. 2 Reflection and Refraction § A lens is used to bend light in

22. 2 Reflection and Refraction § A lens is used to bend light in a specific way. § Converging lens bends light so it converges — (so light rays come to a point) § Diverging lens bends light so it diverges — (spreads apart)

17. 1 Reflection and Refraction § Mirrors reflect light and allow us to see

17. 1 Reflection and Refraction § Mirrors reflect light and allow us to see ourselves. § A prism is used to cause light to change directions.

17. 1 Reflection § Images appear in mirrors because of how light is reflected

17. 1 Reflection § Images appear in mirrors because of how light is reflected by mirrors. § The incident ray follows the light falling onto the mirror. § The reflected ray follows the light bouncing off the mirror.

17. 1 Reflection § In specular reflection each incident ray bounces off in a

17. 1 Reflection § In specular reflection each incident ray bounces off in a single direction. § A surface that is not shiny creates diffuse reflection. § In diffuse reflection, a single ray of light scatters into many directions.

Law of Reflection The incident ray strikes the mirror. The reflected ray bounces off.

Law of Reflection The incident ray strikes the mirror. The reflected ray bounces off. The angle of incidence equals the angle of reflection.

17. 1 Law of reflection 30 o § A light ray is incident on

17. 1 Law of reflection 30 o § A light ray is incident on a plane mirror with a 30 degree angle of incidence. § Sketch the incident and reflected rays and determine the angle of reflection.

17. 1 Refraction § Light rays may bend as they cross a boundary §

17. 1 Refraction § Light rays may bend as they cross a boundary § This bending of light rays is known as refraction. § The light rays from the straw are refracted (or bent) when they cross from water back into air before reaching your eyes.

17. 1 Refraction When a ray of light crosses from one material to another,

17. 1 Refraction When a ray of light crosses from one material to another, the amount it bends depends on the difference in index of refraction between the two materials.

17. 1 Index of refraction The ability of a material to bend rays of

17. 1 Index of refraction The ability of a material to bend rays of light is described by the index of refraction (n).

17. 1 Snell's law of refraction § Snell’s law is the relationship between the

17. 1 Snell's law of refraction § Snell’s law is the relationship between the angles of incidence and refraction and the index of refraction of both materials. Angle of incidence (degrees) Angle of refraction (degrees) ni sin Qi = nr sin Qr Index of refraction of incident material Index of refraction of refractive material

17. 1 Calculate the angle of refraction § A ray of light traveling through

17. 1 Calculate the angle of refraction § A ray of light traveling through air is incident on a smooth surface of water at an angle of 30° to the normal. § Calculate the angle of refraction for the ray as it enters the water.

17. 1 Dispersion and prisms § When white light passes through a glass prism,

17. 1 Dispersion and prisms § When white light passes through a glass prism, blue is bent more than red. § Colors between blue and red are bent proportional to their position in the spectrum.

17. 1 Dispersion and prisms § The variation in refractive index with color is

17. 1 Dispersion and prisms § The variation in refractive index with color is called dispersion. § A rainbow is an example of dispersion in nature. § Tiny rain droplets act as prisms separating the colors in the white light rays from the sun.

17. 2 Mirrors, Lenses, and Images Key Question: How does a lens or mirror

17. 2 Mirrors, Lenses, and Images Key Question: How does a lens or mirror form an image? *Students read Section 17. 2 AFTER Investigation 17. 2

17. 2 Mirrors, Lenses, and Images We see a world of images created on

17. 2 Mirrors, Lenses, and Images We see a world of images created on the retina of the eye by the lens in the front of the eye.

17. 2 Mirrors, Lenses, and Images § Objects are real physical things that give

17. 2 Mirrors, Lenses, and Images § Objects are real physical things that give off or reflect light rays. § Images are “pictures” of objects that are formed in space where light rays meet.

17. 2 Mirrors, Lenses, and Images § The most common image we see every

17. 2 Mirrors, Lenses, and Images § The most common image we see every day is our own reflection in a mirror. § The image in a mirror is called a virtual image because the light rays do not actually come together. § The virtual image in a flat mirror is created by the eye and brain.

17. 2 Mirrors, Lenses, and Images § Light rays that enter a converging lens

17. 2 Mirrors, Lenses, and Images § Light rays that enter a converging lens parallel to its axis bend to meet at a point called the focal point. § The distance from the center of the lens to the focal point is called the focal length. § The optical axis usually goes through the center of the lens.

17. 2 The image formed by a lens § A lens can form a

17. 2 The image formed by a lens § A lens can form a virtual image just as a mirror does. § Rays from the same point on an object are bent by the lens so that they appear to come from a much larger object.

17. 2 The image formed by a lens § A converging lens can also

17. 2 The image formed by a lens § A converging lens can also form a real image. § In a real image, light rays from the object actually come back together.

17. 2 Drawing ray diagrams § A ray diagram is the best way to

17. 2 Drawing ray diagrams § A ray diagram is the best way to understand what type of image is formed by a lens, and whether the image is magnified or inverted. § These three rays follow the rules for how light rays are bent by the lens: 1. A light ray passing through the center of the lens is not deflected at all (A). 2. A light ray parallel to the axis passes through the far focal point (B). 3. A light ray passing through the near focal point emerges parallel to the axis (C).

17. 3 Optical Systems Key Question: How are the properties of images determine? *Students

17. 3 Optical Systems Key Question: How are the properties of images determine? *Students read Section 17. 3 AFTER Investigation 17. 3

17. 3 Optical Systems § An optical system is a collection of mirrors, lenses,

17. 3 Optical Systems § An optical system is a collection of mirrors, lenses, prisms, etc that performs a useful function with light. § Characteristics of optical systems are: — The location, type, and magnification of the image. — The amount of light that is collected. — The accuracy of the image in terms of sharpness, color, and distortion. — The ability to change the image, like a telephoto lens — The ability to record the image (film or electronically)

17. 3 The sharpness of an image § Defects in the image are called

17. 3 The sharpness of an image § Defects in the image are called aberrations and can come from several sources. — Chromatic aberration is caused because different wavelengths of light by dispersion, when different colors focus at different

17. 3 The sharpness of an image — Spherical aberration causes a blurry image

17. 3 The sharpness of an image — Spherical aberration causes a blurry image because light rays farther from the axis focus to a different point than rays near the axis.

17. 3 Thin lens formula § The thin lens formula is a mathematical way

17. 3 Thin lens formula § The thin lens formula is a mathematical way to do ray diagrams with algebra instead of drawing lines on graph paper. 1 +1 =1 do di df Object distance (cm) Image distance (cm) focal length (cm)

17. 3 Use thin lens formula § Calculate the location of the image if

17. 3 Use thin lens formula § Calculate the location of the image if the object is 6 cm in front of a converging lens with a focal length of 4 cm.

17. 3 Image relay § A technique known as image relay is used to

17. 3 Image relay § A technique known as image relay is used to analyze an optical system made of two or more lenses.

Application: The Telescope

Application: The Telescope

17. 3 The sharpness of an image — Diffraction causes a point on an

17. 3 The sharpness of an image — Diffraction causes a point on an object to focus as a series of concentric rings around a bright spot.