LESSON 2 5 Postulates and Paragraph Proofs FiveMinute




























- Slides: 28

LESSON 2– 5 Postulates and Paragraph Proofs

Five-Minute Check (over Lesson 2– 4) TEKS Then/Now New Vocabulary Postulates: Points, Lines, and Planes Key Concept: Intersections of Lines and Planes Example 1: Real-World Example: Identifying Postulates Example 2: Analyze Statements Using Postulates Key Concept: The Proof Process Example 3: Write a Paragraph Proof Theorem 2. 1: Midpoint Theorem

Over Lesson 2– 4 Determine whether the stated conclusion is valid based on the given information. If not, choose invalid. Given: A and B are supplementary. Conclusion: m A + m B = 180 A. valid B. invalid

Over Lesson 2– 4 Determine whether the stated conclusion is valid based on the given information. If not, choose invalid. Given: Polygon RSTU has 4 sides. Conclusion: Polygon RSTU is a square. A. valid B. invalid

Over Lesson 2– 4 Determine whether the stated conclusion is valid based on the given information. If not, choose invalid. Given: A and B are congruent. Conclusion: ΔABC exists. A. valid B. invalid

Over Lesson 2– 4 Determine whether the stated conclusion is valid based on the given information. If not, choose invalid. Given: A and B are congruent. Conclusion: A and B are vertical angles. A. valid B. invalid

Over Lesson 2– 4 Determine whether the stated conclusion is valid based on the given information. If not, choose invalid. Given: m Y in ΔWXY = 90. Conclusion: ΔWXY is a right triangle. A. valid B. invalid

Over Lesson 2– 4 How many noncollinear points define a plane? A. 1 B. 2 C. 3 D. 4

Targeted TEKS G. 4(A) Distinguish between undefined terms, definitions, postulates, conjectures, and theorems. Mathematical Processes G. 1(F), G. 1(G)

You used deductive reasoning by applying the Law of Detachment and the Law of Syllogism. • Identify and use basic postulates about points, lines, and planes. • Write paragraph proofs.

• postulate • axiom • proof • theorem • deductive argument • paragraph proof • informal proof



Identifying Postulates ARCHITECTURE Explain how the picture illustrates that the statement is true. Then state the postulate that can be used to show the statement is true. A. Points F and G lie in plane Q and on line m. Line m lies entirely in plane Q. Answer: Points F and G lie on line m, and the line lies in plane Q. Postulate 2. 5, which states that if two points lie in a plane, the entire line containing the points lies in that plane, shows that this is true.

Identifying Postulates ARCHITECTURE Explain how the picture illustrates that the statement is true. Then state the postulate that can be used to show the statement is true. B. Points A and C determine a line. Answer: Points A and C lie along an edge, the line that they determine. Postulate 2. 1, which says through any two points there is exactly one line, shows that this is true.

ARCHITECTURE Refer to the picture. State the postulate that can be used to show the statement is true. A. Plane P contains points E, B, and G. A. Through any two points there is exactly one line. B. A line contains at least two points. C. A plane contains at least three noncollinear points. D. A plane contains at least two noncollinear points.

ARCHITECTURE Refer to the picture. State the postulate that can be used to show the statement is true. B. Line AB and line BC intersect at point B. A. Through any two points there is exactly one line. B. A line contains at least two points. C. If two lines intersect, then their intersection is exactly one point. D. If two planes intersect, then their intersection is a line.

Analyze Statements Using Postulates A. Determine whether the following statement is always, sometimes, or never true. Explain. If plane T contains point G, then plane T contains point G. Answer: Always; Postulate 2. 5 states that if two points lie in a plane, then the entire line containing those points lies in the plane.

Analyze Statements Using Postulates B. Determine whether the following statement is always, sometimes, or never true. Explain. contains three noncollinear points. Answer: Never; noncollinear points do not lie on the same line by definition.

A. Determine whether the statement is always, sometimes, or never true. Plane A and plane B intersect in exactly one point. A. always B. sometimes C. never

B. Determine whether the statement is always, sometimes, or never true. Point N lies in plane X and point R lies in plane Z. You can draw only one line that contains both points N and R. A. always B. sometimes C. never


Write a Paragraph Proof Given: Prove: ACD is a plane. Proof: and must intersect at C because if two lines intersect, then their intersection is exactly one point. Point A is on and point D is on. Points A, C, and D are not collinear. Therefore, ACD is a plane as it contains three points not on the same line.


Proof: ?

A. Definition of midpoint B. Segment Addition Postulate C. Definition of congruent segments D. Substitution


LESSON 2– 5 Postulates and Paragraph Proofs
2-5 postulates and paragraph proofs answers
Advanced geometry proofs
Lesson 10 unknown angle proofs
Unknown angle proofs
A paragraph proof uses
Flowchart proof example
Postulate 1-5
Parell
List of theorems
Postulates of valence bond theory
The foundations logic and proofs
The foundations logic and proofs
Proofs of work and bread pudding protocols
Parallel lines proofs
Aas congruence theorem
Addition proofs
Unit 2 homework 6 algebraic proof
Continued proofs transversals and special angles
Chapter 2 basic concepts and proofs answers
Grade 11 euclidean geometry revision
Free electron model of metals
Relativity definition
Quantum mechanics postulate
Postulates of special relativity
Postulates of quantum mechanics
Exception of koch postulates
Opposite ray definition
Postulates examples
Huntington postulate