Lecture 2 Binary Image Processing 1 Gray Scale
Lecture 2 Binary Image Processing 1
Gray Scale and Color Image Gray = 0. 299 * R + 0. 587 * G + 0. 114 * B 2
Gray Scale and Color Image 3
Histogram 4
Thresholding 5
Thresholding using Histogram 6
Thresholding by Photoshop l Figure / Ground Separation l แยกรป (Figure) ออกจากพนหลง (background( Algorithm for Threshold if(pixel[row][column]. color >=100) pixel[row][column]. color = 255 else pixel[row][column]. color = 0 7
Properties of Binary Image (1) l Area 0 means white (background) 8
Properties of Binary Image (2) l Position of Object 9
Properties of Binary Image (2) l Position of Object X= 2(1)+3(3)+4(3)+5(8)+6(5)+7(5)+8(2) = 2+9+12+40+30+35+16=144/27 = 5. 33 = 5 Y= 2(1)+3(4)+4(5)+5(4)+6(3)+7(6)+8(3)+9(1) = 2+12+20+20+18+42+24+9 = 147/27 = 5. 44 = 5 Position of object = (5, 5( 10
Properties of Binary Image (3) l Projection 11
Properties of Binary Image (3) l Projection 12
Blob Coloring (region segment) 13
Neighboring System 14
Neighboring System 15
Line Segment Labeling mask 16
Blob coloring example mask Equivalent set 17
Run length encoding Binary image Start and length of 1 runs : row 1 = (1, 3) (7, 2) (12, 4) (17, 2) (20, 3) row 2 = (5, 13) (19, 4) row 3 = (1, 3) (17, 6) Length of 1 and 0 runs : row 1 = (1, 3) (0, 3) (1, 2) (0, 3) (1, 4) (0, 1) (1, 2) (0, 1) (1, 3) row 2 = (0, 4) (1, 13) (0, 1) (1, 4) row 3 = (1, 3) (0, 13) (1, 6) 18
Chain Code) Example( Edge Contour สามารถสรป Chain code ดงน Chain Code 6(2), 5(3), 4(1), 3(1), 5(5), 7(1), 6(1), 5(2), 7(1), 6(1), 8(1), 7(2), 1(1), 2(2), 8(2), 1(2), 2(1), 4(1), 2(1), 1(2), 8(4), 2(3), 4(1), 2(1), 4(1), 3(2), 5(2) 21
- Slides: 23