LCLS Linac Tuning Simulations P Emma LCLS Week

  • Slides: 28
Download presentation
LCLS Linac Tuning Simulations P. Emma LCLS Week April 5, 2005 LCLS Thanks to

LCLS Linac Tuning Simulations P. Emma LCLS Week April 5, 2005 LCLS Thanks to M. Borland for Elegant code changes in support of these studies 5 Apr. 2005 LCLS Week 1 P. Emma@SLAC. Stanford. edu

Description of the Study Start with low-charge configuration (0. 2 n. C, no CSR)

Description of the Study Start with low-charge configuration (0. 2 n. C, no CSR) Use elegant to automate tuning; use only ‘real’ diagnostics Add large random errors to linac systems (e. g. , magnets, RF, beam) Assume rough corrections already made (see LCLS Commissioning Workshop, Sep. 2004) Track through linac many times, each step simulating one particular correction (e. g. , b-matching or RF phasing) Use correction devices already built into design (e. g. , BC 2 correction quads, trajectory controls) Evaluate final beam quality, correction convergence, dynamic range, problem areas, etc. 5 Apr. 2005 LCLS Week 2 P. Emma@SLAC. Stanford. edu

Linac System Errors rms errors (Gaussian, 3 -s cutoff) x and y misalignments z

Linac System Errors rms errors (Gaussian, 3 -s cutoff) x and y misalignments z misalignments Quads relative gradient errors roll angle errors relative field errors Bends anomalous field gradients (BC’s) BPMs x and y misalignments RF strucs. phase errors (static) relative voltage errors (static) e- beam random charge error initial beta mismatch in x and y Element 5 Apr. 2005 LCLS Week 3 value 300 5 0. 5 2 0. 5 0. 3 3 300 2 1 10 2. 0 unit mm mm % mrad % tol. mm mm deg % % P. Emma@SLAC. Stanford. edu z

Sequential Corrections Applied in Simulations Steer entire machine (initially ignore BPMs in DL 1,

Sequential Corrections Applied in Simulations Steer entire machine (initially ignore BPMs in DL 1, BC 2) Set energy and minimize spread in DL 1 (OTR 4, BPM 13 and L 0 b phase/voltage) Set energy and bunch length after BC 1 (BPMS 11, transverse deflector. BC 2 -off, L 1 phase/voltage) Set energy and bunch length after BC 2 (BPMS 21, transverse deflector, L 2 phase/voltage) Beta-match injector (OTR 1 -3, QA 01 -2, QE 01 -4) Correct trajectory again to compensate quad steering Minimize gey after BC 1 with trajectory in QM 12 (WS 11 -13, YC 21201) Minimize gey after BC 2 with L 2 trajectory (WS 21 -24, YCM 12, YC 21601) Minimize gex after BC 2 with L 2 trajectory (WS 21 -24, XCM 11, XCM 13) Correct hx and hx after BC 2 (WS 044 -544, CQ 21, CQ 22) Minimize gex at end of LTU with ‘bumps’ (WS 31 -4, XC 460026, XC 6) Match b after BC 2 & LTU (WS 044 -544, Q 24701, WS 31 -4, Q 6, QEM 3) 5 Apr. 2005 LCLS Week 4 P. Emma@SLAC. Stanford. edu

Trajectory After First Steering DL 1 BC 2 5 Apr. 2005 LCLS Week 5

Trajectory After First Steering DL 1 BC 2 5 Apr. 2005 LCLS Week 5 P. Emma@SLAC. Stanford. edu

Projected Emittance After First Steering Q = 0. 2 n. C 5 Apr. 2005

Projected Emittance After First Steering Q = 0. 2 n. C 5 Apr. 2005 LCLS Week 6 P. Emma@SLAC. Stanford. edu

b-mismatch amplitude after first steering zx = 3. 3 ! GOAL = 1 5

b-mismatch amplitude after first steering zx = 3. 3 ! GOAL = 1 5 Apr. 2005 LCLS Week 7 P. Emma@SLAC. Stanford. edu

Final Long. Phase Space After First Steering sz = 8. 6 mm (0. 2

Final Long. Phase Space After First Steering sz = 8. 6 mm (0. 2 -n. C design is 8. 0 mm) (NOT BAD) DE/E 0 = -0. 3% 5 Apr. 2005 LCLS Week 8 P. Emma@SLAC. Stanford. edu

Set Energy and Minimize Spread in DL 1 (OTR 4) minimize OTR 4 x-spot

Set Energy and Minimize Spread in DL 1 (OTR 4) minimize OTR 4 x-spot size while scanning L 0 b RF phase long. DL 1 phase space before long. DL 1 phase space after L 0 L 1 X L 2 OTR 4 after OTR 4 before 5 Apr. 2005 LCLS Week L 3 9 P. Emma@SLAC. Stanford. edu

Set energy and bunch length after BC 1 post-BC 1 long. phase space before

Set energy and bunch length after BC 1 post-BC 1 long. phase space before post-BC 1 long. phase space after sz = 43 mm sz = 55 mm L 0 L 1 X L 2 L 3 design: 60 mm Sec-25 transverse deflector (BC 2 off) meas. post-BC 1 bunch length BC 1 BPM meas. BC 1 rel. energy L 1 RF phase adjust bunch length to ~60 mm L 1 RF amplitude adjust BC 1 BPM to x = 0 0. 25 mm 5 Apr. 2005 LCLS Week 10 P. Emma@SLAC. Stanford. edu

Set energy and bunch length after BC 2 post-BC 2 long. phase space before

Set energy and bunch length after BC 2 post-BC 2 long. phase space before post-BC 2 long. phase space after sz = 12 mm sz = 8. 7 mm DE/E 0 = +0. 8% L 0 L 1 L 2 X L 3 design: 8. 0 mm sec-25 transverse deflector (BC 2 on) meas. post-BC 2 bunch length BC 2 BPM meas. BC 2 energy L 2 RF phase adjust bunch length to 8. 0 mm L 2 RF amplitude adjust BC 2 BPM to x = 0 0. 25 mm 5 Apr. 2005 LCLS Week 11 P. Emma@SLAC. Stanford. edu

Trajectory After BC 1/BC 2 Energy Corrections 5 Apr. 2005 LCLS Week 12 P.

Trajectory After BC 1/BC 2 Energy Corrections 5 Apr. 2005 LCLS Week 12 P. Emma@SLAC. Stanford. edu

b-match at OTR 2 in the Injector L 0 b QA 01 -02, QE

b-match at OTR 2 in the Injector L 0 b QA 01 -02, QE 01 -04 OTR 3 OTR 2 OTR 1 L 0 L 1 5 Apr. 2005 LCLS Week X L 2 L 3 13 P. Emma@SLAC. Stanford. edu

b-match at OTR 2 with quads: QA 01 -2, QE 01 -4 sx =

b-match at OTR 2 with quads: QA 01 -2, QE 01 -4 sx = 67. 5 mm sy = after correction L 0 before correction 57. 9 mm L 1 X L 2 76. 1 mm 5 Apr. 2005 LCLS Week L 3 sy = 61. 2 mm 14 P. Emma@SLAC. Stanford. edu

Measure Emittance on OTR 11 -13 after BC 1 OTR 13 OTR 12 OTR

Measure Emittance on OTR 11 -13 after BC 1 OTR 13 OTR 12 OTR 11 OTR 2 L 0 L 1 5 Apr. 2005 LCLS Week X L 2 L 3 15 P. Emma@SLAC. Stanford. edu

Vertical offset in QM 12 can be trouble y OTR 12 x gey gex

Vertical offset in QM 12 can be trouble y OTR 12 x gey gex L 0 L 1 5 Apr. 2005 LCLS Week X L 2 L 3 16 P. Emma@SLAC. Stanford. edu

Minimize gey on OTR 12 using YC 21201 x y gex gey L 0

Minimize gey on OTR 12 using YC 21201 x y gex gey L 0 L 1 5 Apr. 2005 LCLS Week X L 2 L 3 17 P. Emma@SLAC. Stanford. edu

BC 2 Minimize gey at WS 21 with YCM 12 & YC 21601 gex

BC 2 Minimize gey at WS 21 with YCM 12 & YC 21601 gex gey L 0 L 1 5 Apr. 2005 LCLS Week X L 2 L 3 18 P. Emma@SLAC. Stanford. edu

BC 2 Now Repeat for gex on WS 21 (XCM 11 & XCM 13)

BC 2 Now Repeat for gex on WS 21 (XCM 11 & XCM 13) gex gey L 0 L 1 5 Apr. 2005 LCLS Week X L 2 L 3 19 P. Emma@SLAC. Stanford. edu

BC 2 Correct Dispersion in BC 2 (WS 044 and CQ 21, CQ 22)

BC 2 Correct Dispersion in BC 2 (WS 044 and CQ 21, CQ 22) gey gex L 0 L 1 5 Apr. 2005 LCLS Week X L 2 L 3 20 P. Emma@SLAC. Stanford. edu

Tweak LTU traj. to minimize gex on WS 31 -4 BC 2 XC 460026

Tweak LTU traj. to minimize gex on WS 31 -4 BC 2 XC 460026 XC 6 gey gex L 0 L 1 5 Apr. 2005 LCLS Week X L 2 L 3 21 P. Emma@SLAC. Stanford. edu

b-match needs correction after BC 2 and in LTU Wow! (zx = 3. 3)

b-match needs correction after BC 2 and in LTU Wow! (zx = 3. 3) GOAL = 1 5 Apr. 2005 LCLS Week 22 P. Emma@SLAC. Stanford. edu

After b-matching at WS 044 and WS 31 Q 24701 Q 6 QEM 3

After b-matching at WS 044 and WS 31 Q 24701 Q 6 QEM 3 zx= 4 ? z 1 hand tweaked, much like real machine 5 Apr. 2005 LCLS Week 23 P. Emma@SLAC. Stanford. edu

Emittance After Final b-matching (no CSR) gey= 0. 91 mm gex = 0. 88

Emittance After Final b-matching (no CSR) gey= 0. 91 mm gex = 0. 88 mm 5 Apr. 2005 LCLS Week 24 P. Emma@SLAC. Stanford. edu

Final Longitudinal Phase Space (no CSR) DESIGN TUNEUP 2 k. A 5 Apr. 2005

Final Longitudinal Phase Space (no CSR) DESIGN TUNEUP 2 k. A 5 Apr. 2005 LCLS Week 25 P. Emma@SLAC. Stanford. edu

Final Slice Emittance (no CSR) limit at 0. 2 n. C, 2 k. A

Final Slice Emittance (no CSR) limit at 0. 2 n. C, 2 k. A Slice emittance originates from Parmela run at 0. 2 n. C, 35 A (C. Limborg) 5 Apr. 2005 LCLS Week 26 P. Emma@SLAC. Stanford. edu

Final Slice Energy Spread (no CSR) limit at 0. 2 n. C, 2 k.

Final Slice Energy Spread (no CSR) limit at 0. 2 n. C, 2 k. A Slice energy spread originates from laser-heater (set a bit low here) 5 Apr. 2005 LCLS Week 27 P. Emma@SLAC. Stanford. edu

Summary Tuning results look encouraging (at 0. 2 n. C) Steering (Dy) after BC

Summary Tuning results look encouraging (at 0. 2 n. C) Steering (Dy) after BC 1 can be very important Setting energy accurately in BC 2 needs work Beta-matching through LTU may benefit from additional e-diagnostics between DL 2 bend pairs Limited resolution of diagnostics not included (they must meet specifications) BC 2 off to meas. BC 1 sz is clumsy (3 rd T-cav? ) Should add CSR (but very slow) LCLS 5 Apr. 2005 LCLS Week 28 P. Emma@SLAC. Stanford. edu