Laura Ferrarese Rutgers University Lecture 5 SBH Demographics

  • Slides: 41
Download presentation
Laura Ferrarese Rutgers University Lecture 5: SBH Demographics SIGRAV Graduate School in Contemporary Relativity

Laura Ferrarese Rutgers University Lecture 5: SBH Demographics SIGRAV Graduate School in Contemporary Relativity and Gravitational Physics

Lecture Outline 1. The First Clue: Supermassive Black Hole Masses and the Total Luminosity

Lecture Outline 1. The First Clue: Supermassive Black Hole Masses and the Total Luminosity of the Host Bulge 2. The MBH- Relation 3. Black Holes and Dark Matter Haloes (? ) 4. Applications

SBHs and Bulges d Kormendy & Richstone (1995) first pointed out that given the

SBHs and Bulges d Kormendy & Richstone (1995) first pointed out that given the eight SBH detections available at the time, SBH masses correlate with the total blue magnitude of their host bulge (meaning the entire galaxy in the case of ellipticals). d This suggests a connection between SBH and bulge masses. Kormendy & Richstone 1995, ARA&A, 33, 581

SBHs and Bulges d This correlation was further elaborated by Magorrian (1998), who published

SBHs and Bulges d This correlation was further elaborated by Magorrian (1998), who published a correlation between SBH and bulge masses based on axysimmetric, 2 -I dynamical models. d The ratio between SBH and bulge mass was measures to be MBH/Mbulge~0. 6%.

 (km s-1) Data from Magorrian et al. (1998) R (arcsec) (km s-1) R

(km s-1) Data from Magorrian et al. (1998) R (arcsec) (km s-1) R (arcsec)

SBHs and Bulges d We have discussed several problems affecting the Magorrian analysis: h

SBHs and Bulges d We have discussed several problems affecting the Magorrian analysis: h the use of 2 -I models might bias the mass h d estimates perhaps more importantly, the models were applied to data which did not resolve the SBH sphere of influence, and therefore contained no information about the central SBH. What if we only include masses which are: h based on data that resolves the SBH sphere of h influence. are derived from 3 -I models Note that these two conditions do not assure that the mass estimate is reliable, but at least it’s a starting point! d Two things happen (Merritt & Ferrarese 2000): h the average MBH/Mbulge ration decreases (from ~0. 6% to ~0. 1%). This is because most of the Magorrian SBH masses are overestimates. h The scatter in the relation, however, does not really seem to change.

SBHs and Bulges d Is the scatter in the MBH-Mbulge relation really as large

SBHs and Bulges d Is the scatter in the MBH-Mbulge relation really as large as it seems? h Mc. Lure & Dunlop (2002) suggest that the scatter depends (perhaps through systematic errors in the bulge magnitudes) on the Hubble type of the host galaxy. h They include (almost) only (but not all) elliptical galaxies, and use R-band instead of B-band magnitudes. Ferrarese 2002/astro-ph/0203047 Mc. Lure & Dunlop 2002

SBHs and Bulges d Marconi & Hunt (2003, astro-ph/0304274) found that a tighter correlation

SBHs and Bulges d Marconi & Hunt (2003, astro-ph/0304274) found that a tighter correlation is obtained if Kd d band magnitudes, instead of B-band magnitudes, are used. This is not surprising: if it is the mass of bulge to drive the correlation, the mass is better traced in the K rather than in the B-band. Also, the B-band magnitudes commonly used are likely very inaccurate, especially for spiral bulges. The bulge mass is simply the virial mass given by: where re and e are the bulge effective radius and velocity dispersion respectively. k depends on the dynamical state of the system, and is therefore not likely (but was assumed to be) constant for all galaxies.

SBHs and Bulges d A tighter relation is obtained if the bulge velocity dispersion

SBHs and Bulges d A tighter relation is obtained if the bulge velocity dispersion is substituted to the bulge blue magnitude (Ferrarese & Merritt 2000 and Gebhardt et al. 2000): Gebhardt et al. 2000 Ferrarese 2002

The Discovery of the M Relation d What is relevant about the MBH relation?

The Discovery of the M Relation d What is relevant about the MBH relation? After all, bulge luminosity and velocity dispersion are known to correlate through the “Faber-Jackson” relation: From Faber & Jackson 1976, Ap. J, 204, 668 d Therefore, the existence of the MBH-Mbulge relation, combined with the Faber-Jackson relation, implies that MBH must correlate with . d The significance of the MBH relation lies in its small scatter, which is smaller than the scatter in either the MBH-Mbulge or Faber Jackson relations. This indicates that the MBH relation is more fundamental.

What if only BH detections obtained from the highest resolution data are used? (MW,

What if only BH detections obtained from the highest resolution data are used? (MW, H 20, HST data) SBH Mass vs. Bulge Velocity Dispersion SBH Mass vs. Bulge Magnitude The “Discovery” of the M Relation

SBHs and the Concentration of Bulge Light d Graham et al. (2001) found evidence

SBHs and the Concentration of Bulge Light d Graham et al. (2001) found evidence of a strong correlation between the concentration of bulges and the mass of their central SBH. h whatever mechanisms are responsible for the formation of the SBH, they not only control the bulge luminosity, but also the distribution of bulge light. h CONS: Use of the concentration index might not be applicable to studies of morphologically disturbed galaxies or dominant c. D galaxies with extended envelopes. h PROS: Measuring central mass concentration is relatively easy, even for galaxies at large distance.

SBHs and the Concentration of Bulge Light d Could we have “expected” a correlation

SBHs and the Concentration of Bulge Light d Could we have “expected” a correlation between SBH masses and concentration of bulge light to exist? Probably yes: The fundamental plane for 226 galaxies in 10 clusters (from Jorgensen et al. 1996, MNRAS, 280, 167 d However, just as is the case for the MBH relation, the MBH C relation seems to be tighter, and therefore more fundamental, than the relations from which it can be “built”

The M- Relation - Why is it Interesting? The tightness of the M relation

The M- Relation - Why is it Interesting? The tightness of the M relation must be telling us something fundamental about the BH connection between BHs and bulges. Simple interpretation: A constant fraction of the bulge mass is channeled into the BH (Ferrarese & Merritt 2000) MBH Mbulge Lbulge (M/L)bulge Lbulge 1/4 Lbulge 5/4 ( 4)5/4 5 (e. g. Jorgensen et al. 1996) (Faber Jackson relation) But: a) the MBH relation is tighter than the relation between MBH and mass (or luminosity). b) Even if a MBH - Mbulge relation were setup in the early universe it is difficult to imagine how it could have survived in the face of mergers. An additional feedback mechanism must act to directly connect black hole mass to stellar velocity dispersion.

Feedback Mechanisms Galaxy Mergers Kauffman Haehnelt Burkert &&Silk (2001)2000 Semi-analytical of merger starbursts in

Feedback Mechanisms Galaxy Mergers Kauffman Haehnelt Burkert &&Silk (2001)2000 Semi-analytical of merger starbursts in CDMfor hierarchical models. The cooling of Self regulated models BH growth within adriven major-merger scenario the formation of spheroids. gas fallsfollowing in during mergersisishalted assumed to the be balanced by energy input SNe. regions BHthat growth when onset of star formation in from the outer of the disk limits the amount of gas available for accretion. MBH ~ >2 MBH ~ 4 -5 Arbitrarily steep slopes can be produced; the model does not reproduce the small scatter in the MThe relation tightness of the M relation is not explained Galaxies Silk & Rees (1998), Haehnelt, Natarajan & Rees (1998) The formation and accretion history of SMBHs is determined by accretion at the center of a gravitationally unstable self-gravitating disk in the core of a newly-formed dark matter halo. (1998) Sellwood &be. Moore (1999) An upper limit to BH growth will. Merritt reached when the emitted energy exceeds the energy deposition rate The BH shapes the ofwind stellar BHdisk. growth driven by bar instabilities which develop during the necessary to unbind the The back reaction of distribution the radiation willorbits produce a dramatic decrease in the destroying triaxiliaty in less than a Hubble time early stages of galaxy formation. accretion rate. < -19 mag) ellipticals if Mof. BHthe /Mgaldisk ~ the When thefor BHfainter mass(M reaches ~1. 5% the mass 3%. and Once the non-axisymmetric is galaxy weakens the accretion (Eddingtonbar luminosity) (dynamical time)halts. = binding component energy of the weakened, further growth of the BH is halted. No BHs should galaxies; 4 GM be found Rbulgein/ DM dominated ≈ GM 2 bulge /Rbulge BH mp/ T 4 a much M /M than Predicts a. Requires much larger MBHlarger /Mbulge than observed BH≈ bulge Rbulge/G 2 5 5 observed MBH ≈ ( T / mp 4 c. G ) ≈ Neglects star formation, deviations from spherical symmetry, mergers. Black Hole

SBH Formation from the The MBH- Relation d Constrain models of SBH/galaxy formation Silk

SBH Formation from the The MBH- Relation d Constrain models of SBH/galaxy formation Silk & Rees 1998; Haehnelt, Natarajan & Rees 1998; Kauffmann & Haehnelt 2000; Haehnelt & Kauffmann 2000; Burkert & Silk 2001; Ciotti & van Albada 2001; Fabian et al. 2001; Cavaliere & Vittorini 2001; Portegies-Zwart & Mc. Millan 2002; Mac. Millan & Henriksen 2002; Zhao et al. 2002; Volonteri, Haardt & Madau 2002; Islam, Taylor & Silk 2002; Wyithe & Loeb 2002, 2003. Haehnelt & Kauffmann 2000

SBH Demographics from the MBH- Relation: I d Compare the SBH mass function in

SBH Demographics from the MBH- Relation: I d Compare the SBH mass function in high redshift quasars and local quiescent galaxies: h Learn about the existence/evolution of obscured quasars h Constrain the accretion Merritt & Ferrarese 2001 Magorrian et al. 1998 Merritt & Ferrarese (2001): MBH derived from the MBH relation Mbulge from Magorrian et al. (1998) Mass density in local Black Holes: x = MBH /Mbulge ~ 0. 13% rbulge ~ 3. 7 108 M Mpc-3 (Fukugita et al. 1998) r ~ 4. 9 105 M Mpc-3

SBH Demographics from the MBH- Relation II Ferrarese 2002 a (astro-ph/0203047) 1) Schechter Luminosity

SBH Demographics from the MBH- Relation II Ferrarese 2002 a (astro-ph/0203047) 1) Schechter Luminosity Function (e. g. Marzke et al. 1998) 2) Faber-Jackson relation (e. g. Kormendy & Illingworth 1993) 3)MBH relation Where M* must incorporate a term accounting for the ratio between bulge and total luminosity for galaxies of different Hubble types (see also Merritt & Ferrarese 2001; Aller & Richstone 2002)

Comparison of SBH Mass Functions d Once the contribution of obscured AGN is accounted

Comparison of SBH Mass Functions d Once the contribution of obscured AGN is accounted for, the cumulative SBH mass density in quasars is larger, by a factor 2, than the one measured in local quiescent galaxies. d The SBH mass densities are different for the quasar and quiescent galaxy population. This seems to be significant at least at the high mass end. Ferrarese 2002 a astroph/0203047 (See also Yu & Tremaine 2002)

Comparison of SBH Mass Functions Yu & Tremaine (2002): Cumulative mass density for Early

Comparison of SBH Mass Functions Yu & Tremaine (2002): Cumulative mass density for Early Type galaxies from SDSS sample. (> M, total) = 1. 44 (> M, Early)=(3. 3 0. 5) 105 M Mpc 3 (for H 0 = 75 km s 1 Mpc 1) (Although using the MBH L relation gives 5. 8 105 M Mpc 3) Yu & Tremaine 2002 (H 0 = 65 km s 1 Mpc 1) Quasars Early Type Galaxies

Interpretation d For MBH > 108 M The SBH mass function in local quiescent

Interpretation d For MBH > 108 M The SBH mass function in local quiescent galaxies is not consistent (in particular, it is lower) with the high-z quasar luminosity function derived from optical surveys if the accretion efficiency is =0. 1 h Higher ( =0. 2) accretion efficiencies might apply to the more massive SBHs, i. e. massive SBHs are rapidly rotating (Yu & Tremaine 2002; Elvis, Risaliti & Zamorani 2002). h Quasars might have super-Eddington luminosities (cfr. Begelman 2001, 2002) h SBHs might be ejected from galactic nuclei as a consequence of merging (Yu & Tremaine 2002; cfr. Milosavljevic & Merritt 2001) h Optically faint accretion (Type II QSOs, advection dominated accretion flow) is negligible for massive SBHs (Yu & Tremaine 2002; but see Elvis, Risaliti & Zamorani 2002) d What happens in the lower mass regime (MBH < 108 M ) is still to be investigated. Details depend on the contribution of obscured QSOs, and the exact characterization of the QSO luminosity function at low redshifts.

The MBH- Relation - Why is it Interesting? Falomo, Kotilainen & Treves 2001 Measure

The MBH- Relation - Why is it Interesting? Falomo, Kotilainen & Treves 2001 Measure SBH masses (30% accuracy!) a Individual galaxies (e. g. Barth et al. 2002) a Test accretion processes and unification schemes h BL Lacs (Falomo, Kotilainen & Treves 2002; Barth, Ho & Sargent 2002) h Radio Loud AGN (O’Dowd, Urry & Scarpa 2002, also Woo & Urry 2002) a Investigate FRI/FRII dichotomy (Marchesini, Celotti & Ferrarese 2002, in prep)

SBH Demographics in Local AGNs: the MBH MB Relation BLR Size Virial velocity Bulge

SBH Demographics in Local AGNs: the MBH MB Relation BLR Size Virial velocity Bulge Magnitude Distances M /Mbulge Laor (1998) Wandel (1999) Mc. Lure & Dunlop (2000) R L 0. 5 v = 0. 87 FWHM(Hb) V-band Bulge/Disk decomp. H 0=80 Rev. Map. v = 0. 87 FWHM(Hb) B-band (Simien & de Vaucouleurs) H 0=75 R L 0. 7 v = 1. 55 FWHM(Hb) I-band Bulge/disk decomp. H 0=50 0. 03% 0. 25% 0. 6%

BH Demographics in Local AGNs (cont’d) MBH/Mbulge ~ 0. 2% in agreement with the

BH Demographics in Local AGNs (cont’d) MBH/Mbulge ~ 0. 2% in agreement with the value determined for local quiescent galaxies (Merritt & Ferrarese 2001 a, Merritt & Ferrarese (2001 b, astro-ph/0107134)

Testing Reverberation Mapping With the MBH- Relation KPNO/4 m - Gemini : On-going program

Testing Reverberation Mapping With the MBH- Relation KPNO/4 m - Gemini : On-going program to measure for all reverberation mapped galaxies (Ferrarese et al. 2001, 2003) Malkan, Gorjiam & Tam (1998) NGC 5548

Testing Reverberation Mapping with the MBH Relation d Comparison between mass estimates from resolved

Testing Reverberation Mapping with the MBH Relation d Comparison between mass estimates from resolved kinematics in quiescent galaxies, and reverberation mapping in Type 1 AGNs shows that reverberation mapping works! Ferrarese et al. 2001 Ferrarese et al. 2003 d Future studies targeting the low and high mass end of the MBH relation, as well as its redshift evolution, will rely on reverberation mapping or secondary mass estimators calibrated using reverberation mapping.

Part III: Beyond the Bulge: the Dark Side of Galaxies Recently, it has become

Part III: Beyond the Bulge: the Dark Side of Galaxies Recently, it has become commonplace to assume that SBH formation/evolution is driven exclusively by the dynamically hot stellar component Kormendy & Gebhardt 2001 However, most self-regulating models of SBH formation link M to the total gravitational mass of the host galaxy or to the mass of the dark matter halo, rather than to the mass of the bulge (e. g. Umemura, Loeb & Turner 1993; Loeb & Rasio 1994; Haehenlt, Natarajan & Rees 1998; Silk & Rees 1998; Cattaneo et al. 1999; Haehnelt & Kauffmann 2000; Adams, Graff & Richstone 2000; Whyithe & Loeb 2002; Volonteri, Haardt & Madau 2002; Islam, Taylor & Silk 2002). Is the M s relation the fundamental reflection of the processes that lead to the formation of SBHs? Could M be controlled by the total gravitation mass of the host galaxy instead?

Mass Tracers Begeman 1987 d Spiral Galaxies: circular velocity of the cold disk component:

Mass Tracers Begeman 1987 d Spiral Galaxies: circular velocity of the cold disk component: 15 objects with HI or optical rotation curves extending beyond R 25 (e. g. Broeils 1992; Begeman 1987; Olling & Merrifield 1998; Newton 1980; Kent 1989; Corbelli & Salucci 2000; van Albada 1980, Krumm & Salpeter 1979; Bosma 1981) R 25 d Elliptical Galaxies: circular velocity derived from non-parametric dynamical modeling: 20 objects (Kronawitter et al. 2000) v(circ)/v(max, circ) Gerhard et al. 2001 r/re

Beyond the Bulge: the vc- Relation

Beyond the Bulge: the vc- Relation

The vc - Relation M 33 N 3198 N 6503 Ferrarese 2002 c, Ap.

The vc - Relation M 33 N 3198 N 6503 Ferrarese 2002 c, Ap. J

The vc - Relation d The relation has been recently confirmed, with unchanged slope

The vc - Relation d The relation has been recently confirmed, with unchanged slope and scatter using a new sample of 12 spirals (Baes et al. 2003)

Is the vc- Relation a Tautology? 1. Are vc and sensitive to the same

Is the vc- Relation a Tautology? 1. Are vc and sensitive to the same mass distribution? vc c

Is the vc- Relation a Tautology? 2. Is the vc- relation a consequence of

Is the vc- Relation a Tautology? 2. Is the vc- relation a consequence of dynamical homology? Casertano & van Gorkom 1991

Is the vc- Relation a Tautology? 3. Is the vc- relation just a reflection

Is the vc- Relation a Tautology? 3. Is the vc- relation just a reflection of the “disk-halo” conspiracy? NGC 2841 NGC 2403 Begeman 1987

Is the vc- Relation a Tautology? 4. Is the vc- relation simply the Tully-Fisher

Is the vc- Relation a Tautology? 4. Is the vc- relation simply the Tully-Fisher relation in disguise? Verheijen 2001

Implications of the vc Relation d Numerical simulations for the formation of disk galaxies

Implications of the vc Relation d Numerical simulations for the formation of disk galaxies (Steinmetz & Muller 1995) : Disk rotational velocity Bulge velocity dispersion

Estimating MDM from vc Bullock et al. 2001 vc vvir

Estimating MDM from vc Bullock et al. 2001 vc vvir

The M - MDM Relation M /MDM ~ 6 10 5 ? ? ?

The M - MDM Relation M /MDM ~ 6 10 5 ? ? ? M /MDM ~ 10 6

The MBH - MDM Relation Wyithe & Loeb 2002 d Theoretical models for the

The MBH - MDM Relation Wyithe & Loeb 2002 d Theoretical models for the quasar luminosity d d function (Wyithe & Loeb 2002; Hatziminaoglou et al. 2002) QSO emission triggered by galaxy mergers in a Press-Schechter formalism SBH mass proportional to a power of the halo circular velocity

Relation Medley

Relation Medley

Suggested Readings d Ferrarese, L. & Merritt, D. 2000 d Gebhardt, K. et al.

Suggested Readings d Ferrarese, L. & Merritt, D. 2000 d Gebhardt, K. et al. 2000 d Ferrarese, L. 2001