LASER PLASMA DIAGNOSTICS Leonida A Gizzi Intense Laser

  • Slides: 32
Download presentation
(LASER) PLASMA DIAGNOSTICS Leonida A. Gizzi Intense Laser Irradiation Laboratory Istituto Nazionale di Ottica

(LASER) PLASMA DIAGNOSTICS Leonida A. Gizzi Intense Laser Irradiation Laboratory Istituto Nazionale di Ottica – CNR Pisa, Italy la. gizzi@ino. it

DENSITY: USE OPTICAL PROBING t Probe pulse Plasma ANALYZER • Interaction of fs pulses

DENSITY: USE OPTICAL PROBING t Probe pulse Plasma ANALYZER • Interaction of fs pulses with gas-jets; • Short-pulse interferometry • Phase shift and Fringe Visibility Depletion • Time-resolved propagation with pump and probe approach

OPTICAL PROBING t Probe pulse Plasma ANALYZER • SHADOWGRAPHY: MAP OF TRANSPARENT PLASMA •

OPTICAL PROBING t Probe pulse Plasma ANALYZER • SHADOWGRAPHY: MAP OF TRANSPARENT PLASMA • KNIFE-EDGE (SCHLIEREN): MAP OF DENSITY GRADIENTS • INTERFEROMETRY: MAP OF DENSITY • POLARIMETRY (FARADAY ROTATION): MAP OF MAGNETIC FIELDS

EXAMPLE: OPTICAL PROBING OF CPA PROPAGATION IN GASES The position of the focus relative

EXAMPLE: OPTICAL PROBING OF CPA PROPAGATION IN GASES The position of the focus relative to the jet is usually a critical parameter probe beam gas jet nozzle 3 mm x 300µm slit or 1 mm diam cyl. main pulse Fine tuning

EVIDENCE OF ASE EFFECT Depending on the relative position of best focus and gas

EVIDENCE OF ASE EFFECT Depending on the relative position of best focus and gas jet, early ionisation may take place due to Amplified Spontaneous Emission. ASE-induced precursor plasma 200 µm Main laser pulse GAS ionised by CPA Second Harmonic emission from main CPA Interferogram taken after pulse propagation: T=+5 ps Simultaneous detection of electron energy spectrum and plasma interferometry enables identification of the role of ASE

PLASMA INTERFEROMETRY t Probe pulse Plasma fringe pattern phase difference electron density The phase

PLASMA INTERFEROMETRY t Probe pulse Plasma fringe pattern phase difference electron density The phase difference map is obtained from the fringe pattern with FFT analysis (M. Takeda, H. Ia, and S. Kobayashi, J. Opt. Soc. Am. 72, 156, (1988), L. A. Gizzi et al. Phys. Rev. E, 49, 5628 (1994)), or with an original numerical technique based on Wavelet Transform (P. Tomassini et al. , Appl. Optics, 40, 6561 (2001)) The electron density map is obtained from the phase difference map with an original algorithm based on Abel inversion extended to moderate axial asymmetric distributions: P. Tomassini & A. Giulietti , Optics Comm. 199, 143 (2001)

OPTICAL DIAGNOSTICS: FEMTOSECOND INTERFEROMETRY Ø All-optical way to retrieve the electron density map of

OPTICAL DIAGNOSTICS: FEMTOSECOND INTERFEROMETRY Ø All-optical way to retrieve the electron density map of the accelerating medium Ø Exploit a laser beam to probe the plasma via its refractive index effect on the interference fringe pattern Ø Use of ultrashort laser pulse enables femtosecond resolution measurements i. e. : Mach-Zehnder interferometer • From the refractive index we can get to ne… • L. A. Gizzi et al. , AIP Conf. Proc. Vol. 827, 3 Editors M. Lontano et al. , Melville, N. Y. (2006). • L. A. Gizzi et al. , PRE, 2009

THE NOMARSKI INTERFEROMETER ü It’s an in-line set-up R. Benattar et al, Rev. Sci.

THE NOMARSKI INTERFEROMETER ü It’s an in-line set-up R. Benattar et al, Rev. Sci. Inst. 50(12), 1583 (1979) ü Enables control of imaging parameters (resolution, f. o. v …) • O. Willi, in Laser-Plasma Interactions 4, Proceedings of the XXXV SUSSP, St. Andrews, 1988, edited by M. B. Hooper (SUSSP, Edinburgh, 1989). • L. A. Gizzi et al. Phys. Rev. E 49, 5628 (1994); M. Borghesi et al. , Phys. Rev. E 54 , 6769 (1996).

BASIC PRINCIPLES The total phase shift in the plasma arm (WKBJ approx. ) is:

BASIC PRINCIPLES The total phase shift in the plasma arm (WKBJ approx. ) is: Comparing the phase difference between the two arms: The plasma refractive index is nc (0. 4 m) 6. 9 1021 cm-3 that can be inverted to obtain ne(x, y, z) Abel inversion (under suitable geometrical symmetry, i. e. cylindrical) P. Tomassini et al. , Appl. Opt. , 40(35): 6561, (2001).

INTERFEROMETIC MAP FROM EXPLODING FOIL PLASMA TARGET LASER PLASMA LASER PROBE … FFT analysis

INTERFEROMETIC MAP FROM EXPLODING FOIL PLASMA TARGET LASER PLASMA LASER PROBE … FFT analysis M. Takeda, H. Ia, and S. Kobayashi, J. Opt. Soc. Am. 72, 156, (1988)

EXAMPLE FFT OF INTERFEROGRAM

EXAMPLE FFT OF INTERFEROGRAM

RECONSTRUCTED ELECTRON DENSITY MAP

RECONSTRUCTED ELECTRON DENSITY MAP

Geometry of beam propagation (He) 200 µm T= +1. 34 ps #141255 f/2. 5

Geometry of beam propagation (He) 200 µm T= +1. 34 ps #141255 f/2. 5

Geometry of beam propagation 200 µm Region of loss of fringe visibility T= +2.

Geometry of beam propagation 200 µm Region of loss of fringe visibility T= +2. 33 ps #141260 f/2. 5

Geometry of beam propagation 200 µm T= +4. 67 ps #141267 f/2. 5

Geometry of beam propagation 200 µm T= +4. 67 ps #141267 f/2. 5

Loss of fringe visibility Longitudinal Transverse

Loss of fringe visibility Longitudinal Transverse

Fringe pattern: modelling - 1

Fringe pattern: modelling - 1

Fringe pattern: modelling - 2

Fringe pattern: modelling - 2

Fringe pattern: modelling - 3 Phase shift L. A. Gizzi et al. Phys. Rev.

Fringe pattern: modelling - 3 Phase shift L. A. Gizzi et al. Phys. Rev. E, 49, 5628 (1994); Fringe visibility

Advanced: Optical probing of Laser Wakefield structure: >Electron density modulations (≈1%); >Fast evolution(fs) >Small

Advanced: Optical probing of Laser Wakefield structure: >Electron density modulations (≈1%); >Fast evolution(fs) >Small spatial scale (µm) Under Self-injection conditions: >High current electron bunch(es); >Azimuthal magnetic field generation; In general, INTENSITY, PHASE and POLARIZATION of a probe pulse will be affected.

Optical probing of Laser Wakefield INTENSITY MODULATIONS: In a Shadowgraphy or Schlieren (knife-edge) configuration,

Optical probing of Laser Wakefield INTENSITY MODULATIONS: In a Shadowgraphy or Schlieren (knife-edge) configuration, measurements will show (qualitatively) density modulations due to absorption or refraction effects; POLARIZATION ROTATION: Plane of polarization of linearly polarized light propagating in a magnetic field parallel to the k-vector will rotate (Faraday rotation). Polarimetric analysis of the beam will yield map of the B-field component along k.

Experimental Setup Courtesy of Malte. Kaluza@uni-jena. de

Experimental Setup Courtesy of Malte. Kaluza@uni-jena. de

Faraday-Rotation • Transverse probing of B-fields in underdense plasma with linearly-polarized probe pulse: if

Faraday-Rotation • Transverse probing of B-fields in underdense plasma with linearly-polarized probe pulse: if B-field induced difference of h for circularlypolarized probe components rotation of probe polarization: measure frot to get signature of B-fields! Courtesy of J. Stamper et al. Phys. Rev. Lett. (1975) Malte. Kaluza@uni-jena. de

EXPERIMENTAL SET-UP Courtesy of Malte. Kaluza@uni-jena. de

EXPERIMENTAL SET-UP Courtesy of Malte. Kaluza@uni-jena. de

JETI-Results: Faraday-Rotation Two polarograms from two (almost) crossed polarizers: 340 µm polarogram 5601µm Courtesy

JETI-Results: Faraday-Rotation Two polarograms from two (almost) crossed polarizers: 340 µm polarogram 5601µm Courtesy of Malte. Kaluza@uni-jena. de polarogram 2

JETI-Results: Faraday-Rotation Two polarograms from two (almost) crossed polarizers: 340 µm polarogram 5601µm polarogram

JETI-Results: Faraday-Rotation Two polarograms from two (almost) crossed polarizers: 340 µm polarogram 5601µm polarogram 2 Deduce rotation angle frot from pixel-by-pixel division of polarogram intensities: Courtesy of Malte. Kaluza@uni-jena. de

JETI-Results: Faraday-Rotation 340 µm simulated feature polarogram 5601µm 2 experimental Faraday feature Experimental evidence

JETI-Results: Faraday-Rotation 340 µm simulated feature polarogram 5601µm 2 experimental Faraday feature Experimental evidence for B-fields from Me. V electrons and bubble! Courtesy of Malte. Kaluza@uni-jena. de MCK et al. , Physical Review Letters 105, 115002 (2010)

LWS-20 Results: Faraday-Rotation Two polarograms from two (almost) crossed polarizers: polarogram 1 Courtesy of

LWS-20 Results: Faraday-Rotation Two polarograms from two (almost) crossed polarizers: polarogram 1 Courtesy of polarogram 2 Electron bunch length: z = 4 µm = 13 fs deconvolved = (6 2) fs Malte. Kaluza@uni-jena. de

LWS-20 Results: Faraday-Rotation • Polarimetry: visualize e-bunch via associated B-fields • change delay between

LWS-20 Results: Faraday-Rotation • Polarimetry: visualize e-bunch via associated B-fields • change delay between pump and probe movie of e-bunch formation • observe electron acceleration on-line! Courtesy of Malte. Kaluza@uni-jena. de 29

LWS-20 Results: Shadowgraphy • Polarimetry: visualize e-bunch via associated B-fields • change delay between

LWS-20 Results: Shadowgraphy • Polarimetry: visualize e-bunch via associated B-fields • change delay between pump and probe movie of e-bunch formation • Shadowgraphy: visualize plasma wave • change electron density change plasma wavelength • observe electron acceleration on-line! Courtesy of Malte. Kaluza@uni-jena. de 30

LWS-20 Results: Shadowgraphy • Shadowgraphy: visualize plasma wave • change electron density change plasma

LWS-20 Results: Shadowgraphy • Shadowgraphy: visualize plasma wave • change electron density change plasma wavelength Courtesy of A. Buck, M. Nicolai, K. Schmid, C. M. S. Sears, A. Sävert, J. Mikhailova, F. Krausz, MCK, L. Veisz, Nature Physics doi: 10. 1038/NPHYS 1942 (2011) Malte. Kaluza@uni-jena. de

SUMMARY • Plasma interferometry can be used to determine plasma density with high spatial

SUMMARY • Plasma interferometry can be used to determine plasma density with high spatial resolution – a limitation exists on the minimum density x length (≈10 E 18 cm-3 x 1 mm ) • Optical probing with fs resolution can be used to investigate ultrafast dynamics of laser plasma interactions; • Probing with “ultra short” (<10 fs) laser pulse can be used to unfold dynamics of laser-wakefield acceleration. • Detailed analysis of diagnostic specifications requires range of specs of COMB plasmas to be defined.