Laser Cooling 1 Doppler Cooling optical molasses 2

  • Slides: 23
Download presentation
Laser Cooling 1. Doppler Cooling – optical molasses. 2. Magneto-optical trap. 3. Doppler temperature.

Laser Cooling 1. Doppler Cooling – optical molasses. 2. Magneto-optical trap. 3. Doppler temperature.

Doppler Cooling: How can a laser cool? Lab frame v

Doppler Cooling: How can a laser cool? Lab frame v

Doppler Cooling: How can a laser cool? Lab frame v Atom’s frame

Doppler Cooling: How can a laser cool? Lab frame v Atom’s frame

Doppler Cooling: How can a laser cool? Lab frame v Atom’s frame Lab frame,

Doppler Cooling: How can a laser cool? Lab frame v Atom’s frame Lab frame, after absorption v-vrecoil

Doppler Cooling: How can a laser cool? Lab frame v Atom’s frame Lab frame,

Doppler Cooling: How can a laser cool? Lab frame v Atom’s frame Lab frame, after absorption v-vrecoil

Doppler Cooling: How can a laser cool? Lab frame v Atom’s frame Lab frame,

Doppler Cooling: How can a laser cool? Lab frame v Atom’s frame Lab frame, after absorption v-vrecoil Ø Absorb a photon atom gets momentum kick. Ø Repeat process at 107 kicks/s large deceleration. Ø Emitted photons are radiated symmetrically do not affect motion on average

Doppler Cooling: How can a laser cool? Lab frame v Atom’s frame Lab frame,

Doppler Cooling: How can a laser cool? Lab frame v Atom’s frame Lab frame, after absorption v-vrecoil 2 87 Rb: = - m/s VØrecoil = 6 mm/s Absorb a photon atom gets momentum kick. I = Isat Ø Repeat process at 107 kicks/s large deceleration. Ø Emitted photons are radiated symmetrically Vdoppler ~ 10 docm/s not affect motion on average m/s

Magneto-Optical Trap (MOT) Problem: Doppler cooling reduces momentum spread of atoms only. Similar to

Magneto-Optical Trap (MOT) Problem: Doppler cooling reduces momentum spread of atoms only. Similar to a damping or friction force (optical molasses). Does not reduce spatial spread. Does not confine the atoms.

Magneto-Optical Trap (MOT) Problem: Doppler cooling reduces momentum spread of atoms only. Similar to

Magneto-Optical Trap (MOT) Problem: Doppler cooling reduces momentum spread of atoms only. Similar to a damping or friction force (optical molasses). Does not reduce spatial spread. Does not confine the atoms. Solution: Spatially tune the laser-atom detuning with the Zeeman shift from a spatially varying magnetic field. B, z ~10 G/cm ~14 MHz/cm

Magneto-Optical Trap 2 -level atom E e g

Magneto-Optical Trap 2 -level atom E e g

Magneto-Optical Trap 2 -level atom E + magnetic gradient e g B z

Magneto-Optical Trap 2 -level atom E + magnetic gradient e g B z

Magneto-Optical Trap 4 -level atom E |g “F=0”, |e “F=1” m. F=+1 + magnetic

Magneto-Optical Trap 4 -level atom E |g “F=0”, |e “F=1” m. F=+1 + magnetic gradient e m. F=0 m. F=-1 g m. F=0 B z

Magneto-Optical Trap 4 -level atom E |g “F=0”, |e “F=1” m. F=+1 + magnetic

Magneto-Optical Trap 4 -level atom E |g “F=0”, |e “F=1” m. F=+1 + magnetic gradient e m. F=0 m. F=-1 g m. F=0 B z

Magneto-Optical Trap 4 -level atom E |g “F=0”, |e “F=1” m. F=+1 + magnetic

Magneto-Optical Trap 4 -level atom E |g “F=0”, |e “F=1” m. F=+1 + magnetic gradient e m. F=0 m. F=-1 s- s+ g m. F=0 B z

Magneto-Optical Trap 4 -level atom E |g “F=0”, |e “F=1” m. F=+1 + magnetic

Magneto-Optical Trap 4 -level atom E |g “F=0”, |e “F=1” m. F=+1 + magnetic gradient + e m. F=0 m. F=-1 s- s+ g m. F=0 B z

Magneto-Optical Trap 4 -level atom E |g “F=0”, |e “F=1” m. F=+1 + magnetic

Magneto-Optical Trap 4 -level atom E |g “F=0”, |e “F=1” m. F=+1 + magnetic gradient + e m. F=0 m. F=-1 s- s+ g m. F=0 B z

Magneto-Optical Trap (MOT)

Magneto-Optical Trap (MOT)

Magneto-Optical Trap (MOT)

Magneto-Optical Trap (MOT)

Magneto-Optical Trap (MOT) ~ 100 K

Magneto-Optical Trap (MOT) ~ 100 K

Magneto-Optical Trap (MOT)

Magneto-Optical Trap (MOT)

Magneto-Optical Trap (MOT) 109 87 Rb atoms

Magneto-Optical Trap (MOT) 109 87 Rb atoms

Francium MOT PROBLEM: Accelerator produces only 106 Fr atoms/s. Very difficult to work with.

Francium MOT PROBLEM: Accelerator produces only 106 Fr atoms/s. Very difficult to work with. SOLUTION: Attach a Francium Magneto-Optical Trap to the accelerator. Cold Francium is concentrated in ~1 mm 3 volume. With T < 100 K, Doppler broadening is negligible. Long integration times. Minimally perturbative environment (substrate free).

Francium MOT PROBLEM: Accelerator produces only 106 Fr atoms/s. Very difficult to work with.

Francium MOT PROBLEM: Accelerator produces only 106 Fr atoms/s. Very difficult to work with. SOLUTION: Attach a Francium Magneto-Optical Trap to the accelerator. Cold Francium is concentrated in ~1 mm 3 volume. With T < 100 K, Doppler broadening is negligible. Long integration times. Minimally perturbative environment (substrate free). MOT collection efficiency ~ 1 % MOT with ~105 210 Fr atoms