Language Technology Meaning Natural Language Understanding Natural Language


































![Generation Process: realization statements Linear Precedence Finite^Subject [clause] Finite Subject Are you +Finite Immediate Generation Process: realization statements Linear Precedence Finite^Subject [clause] Finite Subject Are you +Finite Immediate](https://slidetodoc.com/presentation_image_h/2288eda7a25f08d461d5584259fe5ec0/image-35.jpg)





- Slides: 40
Language Technology Meaning Natural Language Understanding Natural Language Generation Text Speech Recognition Speech Synthesis Speech
Language Technology Meaning Natural Language Understanding Natural Language Generation Text Speech Recognition Speech Synthesis Speech
What is NLG? Natural language generation is the process of deliberately constructing a natural language text in order to meet specified communicative goals. [Mc. Donald 1992]
Example System: Fo. G • Function: – Produces textual weather reports in English and French • Input: – Graphical/numerical weather depiction • User: – Environment Canada (Canadian Weather Service) • Developer: – Co. Gen. Tex • Status: – Fielded, in operational use since 1992
Fo. G: Input
Fo. G: Output
Example System: TEMSIS • Function: – Summarises pollutant information for environmental officials • Input: – Environmental data + a specific query • User: – Regional environmental agencies in France and Germany • Developer: – DFKI Gmb. H • Status: – Prototype developed; requirements for fielded system being analysed
M E T S I S http: //www. dfki. de/service/nlg-demo/
TEMSIS: Output Summary • Le 21/7/1998 à la station de mesure de Völklingen City, la valeur moyenne maximale d'une demi-heure (Halbstundenmittelwert) pour l'ozone atteignait 104. 0 µg/m³. Par conséquent, selon le decret MIK (MIKVerordnung), la valeur limite autorisée de 120 µg/m³ n'a pas été dépassée. • Der höchste Halbstundenmittelwert für Ozon an der Meßstation Völklingen -City erreichte am 21. 7. 1998 104. 0 µg/m³, womit der gesetzlich zulässige Grenzwert nach MIK-Verordnung von 120 µg/m³ nicht überschritten wurde.
A further system • ILEX – generation of virtual museum information online – http: //www. hcrc. ed. ac. uk/ilex/demos/museum. cgi • SUMTIME – generation of weather reports – http: //www. csd. abdn. ac. uk/~ssripada/cgi_bin/Start. SMT. html
TEMSIS: Input Query ((LANGUAGE FRENCH) (GRENZWERTLAND GERMANY) (BESTAETIGE-MS T) (BESTAETIGE-SS T) (MESSSTATION "Voelklingen City") (DB-ID "#2083") (SCHADSTOFF "#19") (ART MAXIMUM) (ZEIT ((JAHR 1998) (MONAT 7) (TAG 21))))
Basic Generation Problem • How to go from an abstract semantic input to a concrete linguistic form that is – semantically correct – stylistically appropriate – textually appropriate ? ? ?
Standard Pipelined Architecture Document Planning Document Plan Microplanning Text Specification Surface Realisation
TACTICAL GENERATOR Semantic specification KPML sentence semantics lexicogrammar
KPML is a TACTICAL GENERATOR Process Semantic specification KPML sentence generation engine Resources semantics lexicogrammar
TACTICAL GENERATION Semantic specification semantics lexicogrammar sentence
What is NLG? Natural language generation is the process of deliberately constructing a natural language text in order to meet specified communicative goals. NLG is a process of choice under specified constraints [Mc. Donald]
Linguistic Description with system networks imperative AXES indicative +Finite atic gm a t n sy paradigmatic interrogative Finite^Subject declarative Subject^Finite
Resource Architecture in KPML: system networks imperative interrogative indicative declarative lexicogrammar
Resource Architecture in KPML: system networks grammatical systems imperative interrogative indicative declarative
Resource Architecture in KPML: system networks grammatical features imperative interrogative indicative declarative
Resource Architecture in KPML: system networks imperative indicative +Finite interrogative Finite^Subject declarative Subject^Finite
Resource Architecture in KPML: system networks realization statements imperative indicative +Finite interrogative Finite^Subject declarative Subject^Finite
Generation Process: system networks imperative indicative +Finite interrogative Finite^Subject declarative Subject^Finite
Generation Process: system networks imperative indicative +Finite interrogative Finite^Subject declarative Subject^Finite
Generation Process: traversal imperative indicative +Finite interrogative Finite^Subject declarative Subject^Finite
Generation Process: traversal imperative indicative +Finite interrogative Finite^Subject declarative Subject^Finite
Generation Process: traversal imperative indicative +Finite interrogative Finite^Subject declarative Subject^Finite
Generation Process: traversal imperative indicative +Finite interrogative Finite^Subject declarative Subject^Finite
Generation Process: traversal imperative indicative +Finite interrogative Finite^Subject declarative Subject^Finite
Generation Process: traversal imperative indicative +Finite interrogative Finite^Subject declarative Subject^Finite
Generation Process: traversal indicative +Finite interrogative Finite^Subject
Generation Process: structure interrogative Finite^Subject +Finite
Generation Process: structure interrogative Finite^Subject +Finite
Generation Process: realization statements Linear Precedence Finite^Subject [clause] Finite Subject Are you +Finite Immediate Dominance [interrogative] going?
Types of Realization Statements • Ordering (immediate, relative) • Structure building • Lexicalization
USER Functionally Motivated Grammatical Choices
USER Functionally Motivated Grammatical Choices user = language engineer: developing and debugging the “grammatical competence” of a language resource
USER Semantic Specifications Functionally Motivated Grammatical Choices
USER Semantic Specifications Functionally Motivated Grammatical Choices user = system builder: developing and debugging a system that expects natural language generation functionality