July 2009 doc IEEE 802 15 doc 15

  • Slides: 55
Download presentation
<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Project: IEEE P 802. 15 WG for Wireless Personal Area Networks (WPANs) Submission Title: [Merged Proposal for FHSS to TG 4 g] Date Submitted: [July, 2009] Source: Company Address: Voice: E-Mail: Re: Abstract: Purpose: [Bob Mason 1, Rodney Hemminger 1, John Buffington 2, Daniel Popa 2, Hartman Van. Wyk 2, Fumihide Kojima 3, Hiroshi Harada 3, Henk de Ruijter 4, Ping Xiong 4, Péter Onódy 4] [1 Elster Electricity, 2 Itron, 3 NICT, 4 Silicon Laboratories] [] [ Response to CFP issued January 22 nd 2009, document 15 -09 -077 -00 -004 g ] [This document describes the Merged Proposal for FHSS to TG 4 g] [ Proposal for consideration of inclusion into 802. 15. 4 PHY draft amendment ] Notice: This document has been prepared to assist the IEEE P 802. 15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P 802. 15. Submission Slide 1 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Merged Proposal from 8 affiliated companies/organizations Objective of this work is to create a baseline FHSS system based on the best technical solution to meet the SUN requirements and plan for the future, without bias to existing systems. This is a MERGED PROPOSAL from the following authors, representing a combination of equipment suppliers and Silicon vendors. • Elster Electricity [09 -302]: Bob Mason, Rodney Hemminger • Itron [09 -292]: John Buffington, Daniel Popa, Hartman Van. Wyk • NICT [09 -312]: Fumihide Kojima, Hiroshi Harada • Silicon Laboratories [09 -278]: Henk de Ruijter, Ping Xiong, Péter Onódy The FHSS merged proposal is supported by: • Aclara: Kendall Smith, Mark Wilbur • Maxim: Rishi Mohindra • Roberto Aiello • TI: Khanh Tuan Le Submission Slide 2 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Agenda • Requirements • Details about merged proposal – – Band plan and channelization System Parameters Frame format: preamble, header, PSDU TX/RX architecture • Performance results – Link budget – System performance in multi-path • Summary and conclusions Submission Slide 3 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Requirements • The network must be comprised of robust, scalable network devices capable of today’s data requirements, but also capable of providing extended data capacity and response times for existing and future data requirements and device types. To meet these criteria, in addition to the items outlined in the PAR, the PHY must support the following: – Data rates to support basic devices (40 -50 kbps) but also data rates to support data intensive devices and applications (e. g. >300 kbps) – Ubiquitous network support for battery powered (i. e. gas and water) and line powered (i. e. electric) devices. All devices must interoperate. – Minimal infrastructure requirements (in many cases, nothing required except the utility devices) – Support for world-wide operation Submission Slide 4 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Proposal Details More details in 15 -09 -0491 -00 -004 g Submission Slide 5 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Key Points of Merged Proposal • • Frequency Hopping Spread Spectrum Three data rates* Frequency band • Medium data rate High data rate 400, 950 MHz (Japan) 50 kbps 100 kbps 200/ 400 kbps 863 -870 MHz (Europe) 902 -928 MHz (US)/ 2, 400 -2, 483. 5 MHz (Worldwide) 40 kbps 100 kbps 200 kbps 40 kbps 160 kbps 320 kbps Operating frequency range • • Low data rate 400 MHz (Japan) 868 MHz (Europe) 902 -928 MHz (US) 950 MHz (Japan) 2, 400 MHz (Worldwide) Other bands as available (including licensed bands) 200 k. Hz and 400 k. Hz channels * Data rates and channel width vary slightly in different regions Submission Slide 6 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> System parameters Frequency band Parameter Low data rate Medium data rate High data rate 50 kbps 100 kbps 200/ 400 kbps GFSK/ 4 GFSK 1. 0 (+/- 25 k. Hz) 1. 0 (+/-50 k. Hz) 1. 0 (+/- 100 k. Hz)/ TBD BT Data rate 0. 5 40 kbps 0. 5 100 kbps 0. 5 200 kbps Modulation Technique GFSK 4 GFSK or O-QPSK* Modulation Index 0. 75 0. 3 BT 0. 5 40 kbps GFSK 160 kbps GFSK 320 kbps 4 GFSK or O-QPSK* 2. 0 (+/- 40 k. Hz) 0. 75 0. 5 4 GFSK: 80 k. Hz freq sep. (-120, -40, +120 k. Hz) 0. 5 426. 025 -469. 4875 MHz Data rate (Japan) Modulation Scheme 950. 9 -955. 7 MHz (Japan) 863 -870 MHz (Europe) 902 -928 MHz (US) 2, 400 -2, 483. 5 MHz (Worldwide) Modulation Index Data rate Modulation Technique Modulation Index BT * One will be selected, analysis still to be completed Submission Slide 7 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Band plan – Channel Spacing Frequency band Parameter Low data rate Medium data rate High data rate 426. 025 -469. 4875 MHz Channel Spacing (Japan) Number of Channels 200 k. Hz** 4~5 2(+1)~2(+2) 863 -870 MHz (Europe) 100 k. Hz 250 k. Hz (AFA) Number of Channels 52 5 5 902 -928 MHz (US) Channel Spacing Number of Channels 200/400 k. Hz 64/128* 400 k. Hz 64 950. 9 -955. 7 MHz (Japan) Channel Spacing 200 k. Hz** Number of Channels 24 24 12 (+11) 2, 400 -2, 483. 5 MHz (Worldwide) Channel Spacing Number of Channels 200/400 k. Hz 200 Channel Spacing * For systems using only the low data rate, 128 200 k. Hz channels are available. For systems supporting mid and high data rates, all devices use 64 channels with 400 k. Hz spacing ** Pending regulatory approval Submission Slide 8 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Japan operation: 400 MHz and 950 MHz Details in document: 15 -09 -0478 -00 -004 g Submission Slide 9 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Europe operation Submission Slide 10 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> EU 868 MHz Band (non-specific SRD) Submission Slide 11 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Modulation parameters • GFSK BT = 0. 5 • FHSS: 40 kbps, h = 0. 75 • AFA: – 100 kbps, h = 0. 75 – 200 kbps, h = 0. 3 Submission Slide 12 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Channel plan for Channel Hopping in Europe ch 1 863. 3 ch 14 864. 6 ch 27 865. 9 ch 40 867. 2 868. 5 ch 2 863. 4 ch 15 864. 7 ch 28 866. 0 ch 41 867. 3 868. 6 ch 3 863. 5 ch 16 864. 8 ch 29 866. 1 ch 42 867. 4 868. 7 ch 4 863. 6 ch 17 864. 9 ch 30 866. 2 ch 43 867. 5 868. 8 ch 5 863. 7 ch 18 865. 0 ch 31 866. 3 ch 44 867. 6 868. 9 ch 6 863. 8 ch 19 865. 1 ch 32 866. 4 ch 45 867. 7 ch 7 863. 9 ch 20 865. 2 ch 33 866. 5 ch 46 867. 8 869. 1 ch 8 864. 0 ch 21 865. 3 ch 34 866. 6 ch 47 867. 9 869. 2 ch 9 864. 1 ch 22 865. 4 ch 35 866. 7 ch 48 868. 0 869. 3 ch 10 864. 2 ch 23 865. 5 ch 36 866. 8 ch 49 868. 1 869. 4 ch 11 864. 3 ch 24 865. 6 ch 37 866. 9 ch 50 868. 2 869. 5 ch 12 864. 4 ch 25 865. 7 ch 38 867. 0 ch 51 868. 3 869. 6 ch 13 864. 5 ch 26 865. 8 ch 39 867. 1 868. 4 869. 7 ch 52 869. 0 Note: Sub-bands for Alarm are excluded (gray frequencies) Submission Slide 13 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> AFA channel plan • Frequency Band: 863 -870 MHz • Frequency sub-bands and allowed max output power: – 868. 00 -868. 60 MHz (600 k. Hz): 25 m. W / +14 d. Bm – 868. 70 -869. 20 MHz (500 k. Hz): 25 m. W / +14 d. Bm – 869. 40 -869. 65 MHz (250 k. Hz): 500 m. W / +27 d. Bm • Sub-band channel separation: 250 k. Hz • Number of channels: 5 • Channel center frequencies: – 868. 175 MHz and 868. 425 MHz – 868. 825 MHz and 869. 075 MHz – 869. 525 MHz • Enable Adaptive Frequency Agility (AFA) with Listen-Before. Talk (LBT) Submission Slide 14 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> FHSS + AFA Hybrid for Europe • FHSS limits the data rate due to: – 100 k. Hz channel limit (ETSI 300 220 V 2. 2. 1) – Overhead associated with FHSS • When higher data rate is desired the MAC can set up a fixed wide band channel controlled under AFA. • For efficient FHSS we propose to skip LBT – LBT time of 5 ~ 10 ms per hop is not needed – Duty cycle restriction of 0. 1% applies which seems sufficient for typical transfers. Submission Slide 15 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Physical Layer Prococol Data Unit PHY-PDU (PPDU) Submission Slide 16 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Proposed PPDU Structure SHR Basic SHR • • SHR Extensions Basic PHR PHR Extensions MAC-PDU (MPDU) CRC Proposed PPDU has the following fields – SHR composed of a basic SHR and some extensions – PHR: composed of a basic PHR and some extensions – PSDU & CRC Proposed PPDU has a key feature – provides a flexible structure to support basic and extended modes Submission Slide 17 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> PPDU Structure: Basic SHR and SHR extensions Basic SHR • SHR Extensions • DRI Octets: variable 2 Bits: variable 16 Field: Preamble SFD ESHR Preamble – length set by phy. NBFHPreamble. Length – default phy. NBFHPreamble. Value)= 0 x 55 Start of Frame Delimiter (SFD) – indicate whethere is a data rate change or not – 2 defined values : • 0 x. AA 52 = No data rate change. • 0 x. AA 2 D = Data rate change prior to PHR Basic SHR fields Octets: 1 variable Bits: 2 2 1 3 variable 8 Field: New Data Rate Settling Delay New SFD New Preamble Length Preamble 2 SFD 2 DRI fields Submission ESHR fields Slide 18 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> PPDU Structure: Basic PHR & PHR extensions • Basic PHR Octets: Bits: Field: PHR • Extensions 2 • 1 1 12 EXT NID PSDU FEC PHR FEC PSDU Length RFU: • reserved for further use Antenna Diversity: • An indication of the capabilities of the device. May allow change to preamble length to take advantage of antenna diversity Enable/Disable DW: • Enable/disable data whitening for PSDU Basic PHR fields Octets: 1 Bits: 6 1 1 Field: RFU Antenna Diversity Disable DW Extension A Header extension A fields Octets: 1 Bits: 8 Field: NID Extension B Header extension B fields Octets: 1 Bits: 8 Field: PHY FEC Coding Extension C Header extension C fields Submission Slide 19 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Octets: Bits: Octets: 2 1 Bits: 16 6 1 1 Field: xxx RFU Antenna Diversity Disable DW Basic PHR Extension A Octets: 2 1 Bits: 16 8 Field: xxx NID Basic PHR Extension B 2 1 1 12 Field: EXT NID PSDU FEC PHR FEC PSDU Length Value: 0 0 X 1 0 x 0 X 0 1 X 1 X 1 X Octets: 2 1 1 Bits: 16 8 8 Field: xxx NID PHR FEC coding Basic PHR Extension B Extension C Basic PHR fields Submission Octets: 2 1 1 1 Bits: 16 8 8 8 Field: xxx NID PHR FEC coding Basic PHR Extension A Extension B Extension C Slide 20 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> PPDU Structure Reduced PPDU with Basic SHR and PHR Octets: variable 2 Bits: variable 16 1 1 Field: Preamble SFD EXT NID PSDU FEC 0 x. AA 52 0 0 X Basic SHR • • 2 variable 4 12 variable 32 PHR FEC PSDU Length Payload CRC 0 0 -4095 PSDU CRC Basic PHR Basic SHR • SFD = 0 x. AA 52 Basic PHR – EXT =0 & NID = 0 & PSDU FEC = X & PHR FEC = 0 Submission Slide 21 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> PPDU Structure PPDU with Basic SHR and full PHR extensions • When multiple optional fields are selected, order is as shown below Octets: x 2 Bits: x 16 1 1 12 6 1 Field: x x EXT NID PSDU FEC PHR FEC PSDU Length RFU 0 x. AA 5 2 1 1 x 1 0 -4095 x Basic SHR Submission 2 1 Basic PHR 1 1 1 8 8 ANT DIV E/D DW NID PHR FEC Coding x x Ext B (= PHR 3) Ext C (= PHR 4) Ext A (=PHR 2) Slide 22 <Elster>, <Itron>, <NICT>, <Silicon Labs>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Data Rate Changes Submission Slide 23 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Data Rate Changes • When SFD indicates a data rate change, Data Rate Indicator field (DRI) is present. – DRI field parameters: • New Data Rate: Specifies new data rate as one of: Mid data rate = 0, High data rate = 1 • Settling Delay: Allows for transmitter and receiver settling prior to transmission of remainder of frame • Preamble 2 Len: Controls length of secondary synchronization preamble (0 -7 octets) • SFD 2 Present: Indicates whether a second SFD 2 field is used for resynchronization prior to the PHY Header Submission Slide 24 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Data Rate Changes DEFAULT DATA RATE NEW DATA RATE • DRI field is the last field transmitted at the default data rate prior to the switch to the new data rate. • Settling delay time (optional) is number of octets (0 -3) at the default data rate Submission Slide 25 <Elster>, <Itron>, <NICT>, <Silicon Labs>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Data Rate Changes • DRI field provides flexibility for: – Fast re-synchronization (no secondary re-synchronization fields) – Minimal re-synchronization (only SFD 2 field) – Multiple options for full re-synchronization with settling delay and/or secondary preamble Submission Slide 26 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Data Rate Change Examples • Fast re-synchronization DEFAULT DATA RATE NEW DATA RATE • Minimal re-synchronization (SFD 2 field present) DEFAULT DATA RATE Submission NEW DATA RATE Slide 27 <Elster>, <Itron>, <NICT>, <Silicon Labs>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Data Rate Change Examples • Re-synchronization with secondary preamble and secondary SFD DEFAULT DATA RATE Submission NEW DATA RATE Slide 28 <Elster>, <Itron>, <NICT>, <Silicon Labs>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Data Rate Change Examples • Re-synchronization with settling delay, secondary preamble and secondary SFD DEFAULT DATA RATE Submission NEW DATA RATE Slide 29 <Elster>, <Itron>, <NICT>, <Silicon Labs>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> 32 -bit CRC • CRC-32 K (Koopman) • Polynomial x 32+x 30+x 29+x 28+x 26+x 20+x 19+x 17+x 16+x 15+x 11+x 10+x 7+x 6+x 4+x 2+x+1 (0 x. BA 0 DC 66 B) • Advantages – Hamming distance >= 6 up to 16 Kbit message length – Traditional CRC-32 only offers HD >=6 up to 268 bits, HD = 5 up to 2974 bits and HD = 4 up to 91607 bits. – CRC-32 K yields two additional bits of error detection for 1500 octet message lengths [1] – CRC-32 K advantage in the 269 -16360 bit (34 to 2045 octet) length range aligns with PAR requirement for minimum 1500 octet payloads [1] Koopman, P. "32 -Bit Cyclic Redundancy Codes for Internet Applications, " Int'l Conf. on Dependable Systems and Networks, 2002. Submission Slide 30 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Optional FEC Algorithm • Reed Solomon (RS) coding for PSDU: – Proposed coding is a RS(38, 28) code. It is a shortened version of a RS(255, 245) code with symbols in Galois Field - GF(256). This code has a Hamming distance of 11 and allows the correction of multiple erroneous bytes per block. • Reed Solomon (RS) coding for PHR: – Proposed coding is a RS(xx, yy) code. Coding scheme TBD based on final PHR definition • Aligns with present sensor network research: – BCH codes outperform energy efficiency of best convolutional codes by 15%. [1] – SEC/DED (single error correction, double error detection) BCH yields significant improvement in packet drop rate (outdoor: 0. 22% to near 0; indoor: 2. 32% to 1. 19%). [2] – Significant benefits in multi-hop mesh networks. [3] [1] [2] [3] Sankarasubramaniam, Y. et al. "Energy efficiency based packet size optimization in wireless sensor networks, " Proc. IEEE Int'l Workshop on Sensor Network Protocols and Applications, pp. 1 -8, 2003. Jeong, J. and Ee, C. "Forward Error Correction in Sensor Networks, " Int'l Workshop on Wireless Sensor Networks, June 2007. Vuran, M. and Akyildiz, I. "Cross-Layer Analysis of Error Control in Wireless Sensor Networks, " 3 rd IEEE Communications Society Conf. on Sensor, Mesh and Ad Hoc Communications and Networks, September 2006. Submission Slide 31 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Optional Data Whitening • • Enabled by default; can be disabled with extended PHY header Seed value based on channel number – no PHR overhead required 8 -bit additive scrambler, using LFSR with feedback polynomial x 8 + x 6 + x 5 + x 4 + 1 Yields maximum length sequence (28 - 1) Submission Slide 32 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> TX/ RX architecture “PHY header processing” Compute CRC-32 PSDU FEC (optional) Data whitening/ scrambling (optional) FEC for PHY header (optional) Data Detection Preamble insertion RF MOD MAC-PDU Generate PHR Compute CRC-32 FEC (optional) Descrambling (optional) Synch RF DMOD “PHY header processing” Submission Slide 33 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> System performance Submission Slide 34 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Link budget Submission Slide 35 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Practical considerations • Low data rate presents advantages in real implementations • Receiver bandwidth is often considered as the main parameter to improve receiver sensitivity • Other factors are also important when analyzing PHY performance – – – Submission ISI is a function of symbol rate Frequency error tolerance (see backup slides) Immunity to narrowband interference (see backup slides) Synthesizer phase noise (see backup slides) Dispersive fading (see backup slides) Slide 36 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Multipath Fading and Data Rate • Fixed (non-time variant) fading characterized by mean delay spread (average value of the delayed signal components) • Mean delay spread will vary based on environment, typical values are as follows: Source: Submission Lee, William C. Y. , “Mobile Communications Design Fundamentals”, John Wiley & Sons, Inc, 1993 Slide 37 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Multipath Fading and Data Rate • For minimal ISI, the symbol rate (Rb) should be less than 10% of the mean delay spread. In other words: Rb < 0. 1 * Δ • 1 Using the above rule, and the mean delay spreads for various environments, the recommended baud rates for each environment can be calculated: 1 Source: Submission Lee, William C. Y. , “Mobile Communications Design Fundamentals”, John Wiley & Sons, Inc, 1993, p 38 -41. Slide 38 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Multipath Fading and Data Rate • The variability in mean delay spreads based on environment presents a strong argument for: – 3 data rates to minimize multipath fading effects – 4 level modulation to achieve higher data rates without reducing system throughput and reliability Submission Slide 39 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Conclusions • • Merged proposal Low data rate* mandatory: 40 -50 kbps Medium/ high data rates* optional: 160/320 kbps GFSK 400 k. Hz channel spacing • • Other proposals 100 kbps FSK 250 k. Hz channel 300 k. Hz channel spacing * Data rates vary slightly in different regions • • • Submission Advantages of merged proposal Lower adjacent channel emission for local regulations Worldwide operation Proven technology for meter reading and FHSS systems Higher data rates for data intensive devices and applications Low and high data rate devices interoperable Slide 40 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Backup Submission Slide 41 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Japan band: 400 MHz Data rate Channel Spacing Number of Channels Modulation Technique Modulation Index BT • Low 50 kbps 200 k. Hz Mid (Default) 100 kbps 200 k. Hz High (option 1) 200 kbps 200 k. Hz /w two carrier bundling (signal bandwidth is 400 k. Hz) High (option 2) 400 kbps 200 k. Hz /w two carrier bundling (signal bandwidth is 400 k. Hz) 4~5 2(+1)~2(+2) GFSK 1. 0 (+/- 25 k. Hz) GFSK 1. 0 (+/-50 k. Hz) GFSK 1. 0 (+/- 100 k. Hz) 0. 5 4 GFSK TBD e. g. 50 k. Hz freq sep (-150, -50, +150 k. Hz) 0. 5 Japan allocation for the 15. 4 g on 400 MHz: – About 1 MHz-system-bandwidth out of 400. 0 MHz~430. 0 MHz band is under consideration that accommodates 4~5 of 200 k. Hz spacing carriers • Japan allocation for the conventional specified low power radio: – – – 426. 0250 and 426. 1375 MHz, 1 m. W (0 d. Bm) 429. 1750 and 429. 7375 MHz, 10 m. W (+10 d. Bm) 429. 8125 and 429. 9250 MHz, 10 m. W (+10 d. Bm) 449. 7125 and 449. 8875 MHz, 10 m. W (+10 d. Bm) 469. 4375 and 469. 4875 MHz, 10 m. W (+10 d. Bm) Submission 42 <Elster>, <Itron>, <NICT>, <Silicon Labs>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Japan band: 950 MHz Data rate Channel Spacing Number of Channels Modulation Technique Modulation Index BT Low 50 kbps 200 k. Hz Mid (Default) 100 kbps 200 k. Hz High (option 1) High (option 2) 200 kbps 400 kbps 200 k. Hz /w two carrier bundling (signal bandwidth is 400 k. Hz) 12 (+11) 24 24 GFSK 4 GFSK 1. 0 (+/- 25 k. Hz) 1. 0 (+/-50 k. Hz) 1. 0 (+/- 100 k. Hz) TBD e. g. 50 k. Hz freq sep (-150, -50, +150 k. Hz) 0. 5 • Japan allocation – 950. 9 -955. 7 MHz Submission 43 <Elster>, <Itron>, <NICT>, <Silicon Labs>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Constrains FHSS in “g” Band • • • Sub-bands for alarms are excluded: Max channel spacing = 100 k. Hz Minimum number of channels = 47 Maximum emission at sub-band edges is -36 d. Bm in 100 k. Hz Max duty cycle = 0. 1% (maybe higher when LBT is used) – NOTE: The duty cycle applies to the entire transmission (not at each hopping channel). • Max dwell time per channel = 400 ms • The maximum return time to a hopping channel shall be equal or less than the product of 4 x dwell and the number of hopping channels and must not exceed 20 s. • Each channel of the hopping sequence shall be occupied at least once during a period not exceeding the product of 4 x dwell time and the number of hopping channels. • In case of LBT being used for FHSS, this function shall be used at each hop channel. Submission Slide 44 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Power Spectral Density 2 -GFSK, BT = 0. 5, 160 kbps Trace 4 (Green) • Mod Index = 0. 75 • 20 d. B BW = 192 k. Hz Submission Slide 45 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Spectral Density 4 -GFSK, BT = 0. 5, 320 kbps • Freq Separation = 80 k. Hz (-120, -80, +120) • 20 d. B BW = 373 k. Hz Submission Slide 46 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Comparison of Modulation Index Numbers for FSK • Wider signal bandwidth used by higher modulation index offers the following advantages where sufficient channel bandwidth is available : – – Submission Greater frequency error tolerance Greater immunity to narrowband interferers Improved performance in presence of synthesizer phase noise Potentially better performance under dispersive (frequency dependent) fading conditions Slide 47 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Comparison of Modulation Index Numbers for FSK • Greater Frequency Error Tolerance – To guarantee capture under sensitivity threshold conditions, the RX IF bandwidth must be as wide as the TX signal bandwidth plus the relative frequency error between the transmitter and receiver. – For narrowband FSK, the frequency error may be a significant percentage of the total RX IF bandwidth, resulting in a S/N penalty given by: S/N Penalty (d. B) = 10*LOG 10(TX BW/RX IF BW) = 10*LOG 10[TX BW/(TX BW + Ferror)] where Ferror = relative frequency error between the transmitter and receiver Submission Slide 48 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Greater Frequency Tolerance • Calculated S/N penalties for various modulation index numbers with following assumptions: – Baud rate (Rb) = 40 ksps – Relative frequency error between Tx and Rx = 50 ppm (25 ppm each device) – Nominal center Frequency = 915 MHz – GFSK TX BW ~= 2*dev + 0. 68*Rb Submission Slide 49 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Comparison of Modulation Index Numbers for FSK • Greater immunity to narrowband interferers – For narrowband interference in the RX IF BW, a wider FSK BW offers better immunity as the interfering signal affects a smaller percentage of the desired signal bandwidth – Relative immunity for FSK signals as a function of BW can be approximated by: Relative Immunity (d. B) = 10*LOG 10(TX BW 1/TX BW 2) Submission Slide 50 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Greater immunity to narrowband interferers • Calculated relative immunities for various modulation index numbers with following assumptions: – Baud rate (Rb) = 40 ksps – GFSK TX BW ~= 2*dev + 0. 68*Rb Submission Slide 51 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Comparison of Modulation Index Numbers for FSK • A higher modulation index provides improved performance in the presence of synthesizer phase noise – Synthesizer phase noise can substantially degrade FSK performance when the tone spacing is sufficiently narrow such that the integrated phase noise power is a significant percentage of the information bandwidth. – Common with inexpensive/simple synthesizers and narrow tone spacings. – For relatively narrow deviations (m < 2), the integrated synthesizer phase noise is substantial, contributing to phase error on the TX side and reduced Eb/No on the RX side. Submission Slide 52 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Improved performance in presence of synthesizer phase noise • The plot below shows the integrated phase noise relative to each FSK tone at a 40 k. B data rate over the dominant information bandwidth of 1/Tb (centered about the tone) Assume a typical low cost synthesizer with the following parameters: – – Loop Bandwidth Fc: 20 k. Hz 1/f corner frequency: 100 Hz Noise plateau*1: -55 d. Bc/Hz 1/f^2 upper corner frequency Fc 2: 150 k. Hz*2 *1 Noise plateau = essentially constant noise density between 1/f corner frequency and loop bandwidth Fc *2 The 1/f^2 upper frequency represents the point where the 6 d. B/ octave roll-off ends as the ultimate noise floor is approached. The effect on total integrated noise is minimal for Fc 2 > 100 k. Hz Submission Slide 53 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Comparison of Modulation Index Numbers for FSK • Potentially better performance under dispersive (frequency dependent) fading conditions – As occupied bandwidth of a signal increases, it can begin to experience different fading effects across its frequency range (dispersive fading). – If the bandwidth is sufficiently large, the fading may become uncorrelated across some or all of the signal bandwidth, with a resultant reduction in fading degradation (as compared to flat fading). – The required signal bandwidth to achieve this is governed by the fading coherence bandwidth Bc: Bc = 1/(2¶Δ) Δ = fading mean delay spread – The desired signal frequency components at or beyond the coherence bandwidth, Bc, will experience uncorrelated fading. Submission Slide 54 <Elster>, <Itron>, <NICT>,

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g>

<July 2009> doc. : IEEE 802. 15 -<doc 15 -09 -0490 -01 -004 g> Better Performance Under Dispersive Fading Conditions • • • If channel BW is available, the FSK tone spacing can be adjusted to provide uncorrelated fading between tones FSK tone spacing for uncorrelated fading between tones: f 2 – f 1 > Bc Typical mean delay spreads and the resulting fading coherence bandwidths are shown in the following table: The ideal FSK parameters for maximum fading immunity are a low data rate and a high deviation. For urban environments, optimal fading immunity can be achieved with a data rate of 40 kbps and a modulation index of 2. 0 Submission Slide 55 <Elster>, <Itron>, <NICT>,