JLEIC Ion Injectors Overview Ion Collider Ring Overview

  • Slides: 13
Download presentation
JLEIC Ion Injectors Overview Ion Collider Ring • Overview Source/ion Linac • Ion Sources

JLEIC Ion Injectors Overview Ion Collider Ring • Overview Source/ion Linac • Ion Sources Ion Booster • RFQs/Linacs – Brahim Mustapha (next talk) • Booster • Bunch Formation • Conclusions Oct 10 2017 EIC Collaboration Meet JLEIC Ion Injector Overview T. Satogata p. 1

JLEIC Hadron Beam Complex • Polarized p, d, 3 He; unpolarized heavy ions to

JLEIC Hadron Beam Complex • Polarized p, d, 3 He; unpolarized heavy ions to 208 Pb • Superferric figure-8 Booster – polarized protons: KE=280 Me. V to 7 Ge. V – 208 Pb+67: KE=100 Me. V/u to 2. 7 Ge. V/u • Source / Linac / Booster needed for ~30 min every 4 -6 hours – Or when beam is aborted or dumped from collider ring • Other time can be spent on tuning and maintenance – And possible future physics programs (e. g. nuclear physics) Ion Collider Ring Source/ion Linac Ion Booster Oct 10 2017 EIC Collaboration Meet JLEIC Ion Injector Overview T. Satogata p. 2

JLEIC “Supercycle” Cooling ions Booster ions Injection electrons Injection ~30 min electrons Collider electron

JLEIC “Supercycle” Cooling ions Booster ions Injection electrons Injection ~30 min electrons Collider electron cooler Booster Ramp up Physics Ramp down (ramp) Physics + Top-off (ramp) ~15 min ~240 -360 min (75 -85% of time) CEBAF ~15 min CEBAF =300 -420 min high availability • JLEIC is a new type of hybrid collider – Ion ring injectors are conventional (“long” ion collider stores) – Ion ring electron cooler is a high-power ERL (Benson, Weds) – Electron ring is more like a storage ring light source (Lin, today) • Push towards smaller equilibrium emittance, dynamic aperture • “Top-off” operation requires high injector availability – Both rings require spin lifetime optimization Oct 10 2017 EIC Collaboration Meet JLEIC Ion Injector Overview T. Satogata p. 3

Polarized Ion Source Units JLEIC design ABPIS+ OPPIS* H- Pulse current m. A 2

Polarized Ion Source Units JLEIC design ABPIS+ OPPIS* H- Pulse current m. A 2 3. 8 4 (0. 7) Pulse length ms 0. 5 0. 17 (0. 3) Charge per pulse μC 1 0. 65 Protons per pulse 1012 6. 24 4. 03 % 100 91 Polarization 85 Documented performance • ABPIS and OPPIS: existing polarized ion sources – ABPIS provides improved polarized d performance – ABPIS concept exists for polarized He 3, Li • Develop ABPIS to meet JLEIC requirements – Discussing R&D with Dudnikov/Muons Inc/ANL – Reaching out to Julich/TUNL Amy Sy Oct 10 2017 EIC Collaboration Meet JLEIC Ion Injector Overview T. Satogata p. 4

Unpolarized Ion Source Units Charge state JLEIC design EBIS+ ECR* Pb 30+ Au 32+

Unpolarized Ion Source Units Charge state JLEIC design EBIS+ ECR* Pb 30+ Au 32+ Pb 27+ Pulse current m. A 1. 3 1. 7 ~0. 5 Pulse length ms 0. 01 0. 02 ~0. 2 Charge per pulse μC 0. 075 0. 1 Ions per pulse 1010 1 ~0. 23 Documented performance • EBIS and ECR: existing unpolarized heavy ion sources – EBIS provides improved intensity performance – Existing EBIS sources meet most JLEIC requirements • Operational EBIS at BNL (RHIC, 2 m), ANL (ATLAS, 1 m) • Low risk: no additional R&D necessary Amy Sy Oct 10 2017 EIC Collaboration Meet JLEIC Ion Injector Overview T. Satogata p. 5

Ion Linac: Layout and Highlights • SRF linac: 135 Me. V p -> 285

Ion Linac: Layout and Highlights • SRF linac: 135 Me. V p -> 285 Me. V p, 100 Me. V/u 208 Pb 67+ – Extend HWR section with additional cryomodules, same beta RF – Brahim Mustapha, Jacob Heglund (IIT, summer 2017 REU) • Separate light/heavy ion RFQs/LEBTs • Improved NC FODO DTL with IH structure • SRF based on ANL (ATLAS)/FRIB QWR/HWR designs • To be discussed by Brahim in next talk Oct 10 2017 EIC Collaboration Meet JLEIC Ion Injector Overview T. Satogata p. 6

JLEIC Booster: Layout and Parameters Ring circumference: 275 m (Ccollider/8) proton: KE 285 Me.

JLEIC Booster: Layout and Parameters Ring circumference: 275 m (Ccollider/8) proton: KE 285 Me. V - 7. 06 Ge. V RF cavity kicker “ 3 T” superferric dipoles ramp rate 1. 0 T/s Crossing angle: 79. 8 deg. extraction • Booster functionality: • – Accumulate linac pulses with DC electron cooling, RF capture – Bunch splitting, longitudinal formation – Extraction/transfer to collider ring – Preserving ion polarization – • figure-8 shape – Imaginary g. T lattice – Space charge dominated: ~0. 2 Oct 10 2017 EIC Collaboration Meet injection Injection: multi-turn 6 D painting (Ed Nissen) – 0. 22 -0. 25 ms long pulses ~180 turns – Proton single pulse charge stripping: 285 Me. V – Ion 28 -pulse drag-and-cool stacking: 100 Me. V/u Extraction: kicker-septum – 300 ns (rise) – 300 ns (flat top) – 300 ns (fall) JLEIC Ion Injector Overview A. Bogacz, IPAC’ 17 WEPVA 040 T. Satogata p. 7

JLEIC Booster Beta Functions Oct 10 2017 EIC Collaboration Meet JLEIC Ion Injector Overview

JLEIC Booster Beta Functions Oct 10 2017 EIC Collaboration Meet JLEIC Ion Injector Overview T. Satogata p. 8

JLEIC Booster Dispersion “Negative” dispersion Imaginary transition energy (c. f. J-PARC MR) Oct 10

JLEIC Booster Dispersion “Negative” dispersion Imaginary transition energy (c. f. J-PARC MR) Oct 10 2017 EIC Collaboration Meet JLEIC Ion Injector Overview T. Satogata p. 9

Booster: protons • H- stripping injection – aperture ~45 p mm-mrad – ~2 x

Booster: protons • H- stripping injection – aperture ~45 p mm-mrad – ~2 x 1012 particles/cycle • 23 k. V h=1 RF capture – – Min bucket height 7 e-3 Capture time 10 -20 ms Bucket area ~6 e. V-s Bunch area ~1 e. V-s 28 cycles = 3 minutes Oct 10 2017 EIC Collaboration Meet Booster f. RF [k. Hz] Booster Brho [T-m] 3. 3 s acceleration time JLEIC Ion Injector Overview T. Satogata p. 10

Booster: lead 208 Pb 67+ Collider 0. 5 A • Linac heavy ion pulses:

Booster: lead 208 Pb 67+ Collider 0. 5 A • Linac heavy ion pulses: 0. 5 A, max 250 us (120 Booster turns) – 2 -4 linac pulses of 120+ turn accumulation per Booster cycle – Tradeoff pulse length in cooling accumulation studies Oct 10 2017 EIC Collaboration Meet JLEIC Ion Injector Overview T. Satogata p. 11

JLEIC Bunch Formation Step 6/7. Bucket-to-bucket transfer to the collider ring and BB cooling,

JLEIC Bunch Formation Step 6/7. Bucket-to-bucket transfer to the collider ring and BB cooling, repeat 26 times (Nh=28) 4. Accelerate and cool 2. Accumulating coasting beam DC cooler BB cooler DC cooler 3. Capture to bucket 5. Bunch compression to ~56 m 2 x 80 m gaps 1. 2. 3. 4. 5. 6. 7. 8. 9. Multi-turn injection from linac to booster (6 D phase space painting) Capture beam into h=1 bucket (~200 m bunch length) Ramp to 8 Ge. V Compress the bunch length to match ion collider ring RF bucket Bucket-to-bucket transfer, each bucket 80 m (gap between bunches ~24 m, ~80 ns) Cool in ion ring during injection to IBS/LSC limits Repeat step 2 -6 26 times (each cycle ~10 s, total ~6 minimum) Ramp collider ring to collision energy Perform binary bunch splitting up to 7 times to h=3584 (when colliding high energy/low current electron beam, splitting can be reduced to 5 times to h=896), perform bunch length compression and initiate high-energy cooling 10. Manipulate the beam to create/remove several extra empty buckets (476 MHz) in the gap (h=3580 -3588 depending on ion energy, as required by beam synchronization). Jiquan Guo Oct 10 2017 EIC Collaboration Meet JLEIC Ion Injector Overview T. Satogata p. 12

Conclusions • JLEIC ion complex is mostly conventional but still poses challenges – –

Conclusions • JLEIC ion complex is mostly conventional but still poses challenges – – Polarized ion sources require development (esp. polarized d) Long linac optimization in progress (Brahim et al) Booster injection design and modeling in progress (Ed) Bunch formation strategy: unprecedentedly short bunches (Randy, Jiquan) – Designed to be space charge limited at several stages • Additional work underway to – Document end to end budgets (emittance, intensity) – Develop end to end simulations (particularly Booster) – Develop machine parameter documents (for TDR) Oct 10 2017 EIC Collaboration Meet JLEIC Ion Injector Overview T. Satogata p. 13