JHF Strangeness Physics 1 JHF Strangeness Nuclear Physics

  • Slides: 15
Download presentation
JHF原子核 実験計画とエレキに対する要求 Strangeness Physics を中心に 東北大理 1. JHF で行う実験 Strangeness Nuclear Physics Part 2.

JHF原子核 実験計画とエレキに対する要求 Strangeness Physics を中心に 東北大理 1. JHF で行う実験 Strangeness Nuclear Physics Part 2. Beam Line Detector System 3. DAQ System への要求 高橋俊行

Experimental Facility – 50 Ge. V PS – PS Parameter Intensity Duration Extraction Beam

Experimental Facility – 50 Ge. V PS – PS Parameter Intensity Duration Extraction Beam Lines ( 1期計画 ) P [Ge. V/c] Intensity @1 x 1014 ppp Length [m] K/p K 1. 8 1. 0 – 2. 0 K-(1. 8): 1. 5 x 107 40 2 -5 K 1. 1 0. 5 – 1. 1 K-(1. 1): 1. 5 x 107 K+(0. 8): 1 x 107 25 3. 2 x 1014 ppp 3. 42 sec 0. 7 sec Beam Lines ( 2期計画 ) HR: High Intensity: p 109 High Resolution: Dp/p = 10 -4 Primary: Primary Beams of p & Ion High Intensity Kaon Beams are available !

Strangeness Physic Programs 1. Study of S = -2 System 1 -1. Spectroscopy of

Strangeness Physic Programs 1. Study of S = -2 System 1 -1. Spectroscopy of X Hypernuclei by (K-, K+) Reaction 1 -2. Study of LL-Hypernuclei by Sequential Pionic Decays 1 -3. Study of Double Strangeness Nuclei by an Emulsion-Counter Hybrid Method 2. Hyperon-Proton Scattering 2 -1. Cross Sections for X-p Elastic and X-p -> LL Reaction 2 -3. Polarization for Lp and S+p Elastic Scattering 3. High Resolution Spectroscopy of S = -1 Hypernuclei 3 -1. g-Spectroscopy with Ge-Detectors (Hyper. Ball) 3 -2. High-Resolution Reaction Spectroscopy by (p, K+) Reactions

1 -1. Spectroscopy of X Hypernuclei High Momentum Transfer Reaction -> well-separated peak structure

1 -1. Spectroscopy of X Hypernuclei High Momentum Transfer Reaction -> well-separated peak structure (Single-particle States) X single particle potential, effective X N Interaction (K-, K+) Reaction at 1. 8 Ge. V/c 1. 2 Ge. V/c for K+ 28 Si, 58 Ni, 208 Pb Targets: Energy Resolution: 2 Me. V(FWHM) Intensity: 1 x 107 [/sec] Beam Spectrometer: Dp/p=2 x 10 -4@1. 8 Ge. V/c Tracking Type, K- Selection K+ Spectrometer: Dp/p=2 x 10 -4@1. 2 Ge. V/c 50 msr SKS + (D ) + Q Good Particle Identification

1 -2. LL Hypernuclei by Sequential Pionic Decays High-Statistics LL Hypernuclei Detection by Counters

1 -2. LL Hypernuclei by Sequential Pionic Decays High-Statistics LL Hypernuclei Detection by Counters X- Production by (K-, K+) Reaction Double L Compound States Formation Double L Fragment Detect Sequential Pionic Decays ( 2 monochromatic p- ) Medium Resolution Beam and K+ Spectrometer Beam Intensity: 1 x 107 [/sec] Pion Spectrometer: Dp=3 Me. V/c @ 100 Me. V/c Large Acceptance Cylindrical Detector System (CDS) Upgrade of BNL-AGS E 906 10 times higher beam intensity

1 -3. Double Strangeness Nuclei by an E-C Hybrid Method LL Interaction E 174

1 -3. Double Strangeness Nuclei by an E-C Hybrid Method LL Interaction E 174 Obs. of LL Hypernucleus H-dibaryon ? -> E 373 103 stopped X-events -> JHF Exp. 104 events Beam: 105 K-/spill, K-/p- >10, small size K+ Spectrometer: Large Acceptance, Short Flight Path ( KURAMA) Tracker: double-sided SSD ~10 mm resolution SCIFI <105 Hz Operations Large-size Image Data 3 -stage Trigger System & Fast DAQ System

2. Hyperon Proton Scattering Baryon-Baryon Interaction extending to SU(3) space Meson Exchange Picture or

2. Hyperon Proton Scattering Baryon-Baryon Interaction extending to SU(3) space Meson Exchange Picture or Quark Picture ? Lack of the Experimental Data E 251: E 289: S+p -> S+p, Lp -> Lp, S-p -> S-p using SCIFI Detector as Production and Scattering Targets JHF: X- production via (K-, K+) at 1. 6 Ge. V/c 1 x 107 [/sec] Observe X-p -> X-p, X-p -> LL

3. 1 Hypernuclear g-Ray Spectroscopy Observe Hypernuclear Levels with Ultra-High Resolution of 2 ke.

3. 1 Hypernuclear g-Ray Spectroscopy Observe Hypernuclear Levels with Ultra-High Resolution of 2 ke. V by Ge Detectos Level Energy -> ( Effective ) YN (Spin-Dependent) Interaction B(El), B(Ml) -> Impurity Effects, Nuclear Medium Effects Table of Hyper. Isotopes Hypernuclear States Identification (K-, p-) Reaction with 3 Me. V Resolution Beam: K- 0. 8/1. 1/1. 8 Ge. V/c, 2 x 107 [/sec] p-Spectrometer: Large Acceptance Good Resolution Hyper. Ball: Large Solid Angle as 40% of 4 p Segmented Ge Detectors + BGO Suppressors Transistor Reset Type Preamplifier + UHA

3. 2 Reaction Spectroscopy with (p, K+) Reaction A few 100 ke. V Resolution

3. 2 Reaction Spectroscopy with (p, K+) Reaction A few 100 ke. V Resolution Reaction Spectroscopy of S=-1 Hypernulei Fine Structures above Particle-Decay Threshold <-> g-Spectroscopy Coulomb-Assisted Hybrid S-Hypernuclear Bound States Neutron-Rich L Hypernuclei by Two Step (p-, K+) Reaction p Beam Line 1– 1. 5 Ge. V/c 109 [/sec] Intensity 10. 6 [cm/%] Dispersion K+ Spectrometer Focal Plane Type Dp/p = 10 -4 Vert. Mag. (R 33): -3. 084 Mom. Accpt. : ± 5% Solid Angles: 16 msr K+ Survival: ~0. 1

JHFで要求されること – Beam Tracking 1 – Beam Intensity 107 [/sec] 以上 これまでの経験 5 x

JHFで要求されること – Beam Tracking 1 – Beam Intensity 107 [/sec] 以上 これまでの経験 5 x 106[/sec] with 5 mm spacing DC & S. H. TDC (K 6) 200 mm(s)程度の位置分解能 (低物質量) <2 x 107[/sec]: >2 x 107[/sec]: 3 mm spacing DC + M. H. TDC 1 mm MWPC 0. 5 mm MWPC Scintillation Fiber (0. 5 -1. 0 mm Pitch) Hodoscopes ? ビームサイズ 10 cmでのWireあたりの平均Rates Gate Time Rates/Wire@107[Hz] 3 mm DC 100 ns 3 x 105 [Hz] 1 mm PC 50 ns 1 x 105 [Hz] 0. 5 mm PC 50 ns 5 x 104 [Hz] MHzに近いRateでの動作が求められる。 Pre. Amp. 数 10 ns のIntegration Time Amp. P. Z. C & Base Line Restore

JHFで要求されること – Beam Tracking 2 – K 1. 8 Beam Spectrometer (QDQDQ) Effective Area:

JHFで要求されること – Beam Tracking 2 – K 1. 8 Beam Spectrometer (QDQDQ) Effective Area: 20 cm x 10 cm 程度として Entrance: 0. 5 mm PC ( x, u(30), v(-30), x’ ) x 2 x: 400 u, v: 512 Total: 3648 channels Exit: 3 mm DC ( x, x’, u(15), u’, v(-15), v’ ) x 2 x, u, v: 64 Total: 768 channels System全体( Pre. Amp. Discri, TDC, etc )のコンパクト化が重要 1. SONY ASD chip (4 ch. /chip)

Trigger Rates (K-, K+) Reaction の実験 AGS-E 906 (K-, K+) 48 D 48 Spectrometer

Trigger Rates (K-, K+) Reaction の実験 AGS-E 906 (K-, K+) 48 D 48 Spectrometer ( msr) Be (15 cm, ) Target 2 AC, 1 LC 600 Triggers / 1. 5 x 106 Kこれから推測すると、JHF( several x 107 K-)では、 数k. Hz~10 k. Hzの 1 st Level Trigger Rates (K-, p-) Reactionの実験 K- -> m-n Decay が Main Background Trigger Decay Arm ( Ge-detector, etc ) をRequire しても、2 k. Hz程度 2 nd Level ( Mass Selection Trigger ) が必須 それでも、数k. Hzで取れるDAQ System が必要 ADC, TDC のConversion Time 10 ms以下

Data Size Beam & Scattered Spectrometer: 400 words/event with Pedestal Suppression これにCoincidence Detectorのデータが加わる。 Hyper.

Data Size Beam & Scattered Spectrometer: 400 words/event with Pedestal Suppression これにCoincidence Detectorのデータが加わる。 Hyper. Ball: CDS: SSD: SCIFI Image: 30 words * Multiplicity 100 words ~50 words [ 3 Charge Info. /track ] Very Large ( Transfer Time 45 ms for 10 MHz Clock) Spectroscopy Exp. でも A) 400 [words/event] x 2000 [triggers/sec] = 3. 2 [Mbytes/sec ] B) 1 PS-Cycleでは、2. 5 Mbytes を 2 sec. 程度で読み出し、記録する。 B) については、現在、将来の計算機Powerを考えれば、問題ない。 A) については、TKO ( 0. 5~ 1? ms/cycle )では、苦しい。 FASTBUS ( 10 Mwords/sec ) 程度の転送Speedが必要

TKO の限界 Dead time 10% で、2 k. Hz でとるためには、ConversionとReadoutを含めて、 50 ms でしか許されない。 0. 5

TKO の限界 Dead time 10% で、2 k. Hz でとるためには、ConversionとReadoutを含めて、 50 ms でしか許されない。 0. 5 ms/cycle だとすると、Conversion Timeを無視しても、100 scan しかできない。 1. Conversion Time: Module 全体平均で、10 ms のADC, H. R. TDC, M. H. TDC 2. Module にData Suppression の機能を持たせる。 FIFO 形式で読み出せる。 3. Multi Event Buffer を持たせる? 4. 10 M words/sec 以上のSpeedのReadout Bus 5. PS Cycle 中のData Buffering