January 2019 doc 15 19 0007 00 004

  • Slides: 13
Download presentation
January 2019 doc. : 15 -19 -0007 -00 -004 z. Project: IEEE P 802.

January 2019 doc. : 15 -19 -0007 -00 -004 z. Project: IEEE P 802. 15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Low Power Considerations for 15. 4 z] Date Submitted: [11 th January 2019] Source: [Guido Dolmans] Company [Holst Centre / Imec] Address [High Tech Campus 31, Eindhoven, the Netherlands] Voice: [+31. 4020436], E-Mail: [guido. dolmans@imec-nl. nl] Abstract: [Power consumption considerations for 15. 4 z enhanced impulse radio group w. r. t. the UWB PHY ] Purpose: [] Notice: This document has been prepared to assist the IEEE P 802. 15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P 802. 15. Guido Dolmans (Holst Centre / Imec)

S l i d e 2 January 2019 doc. : 15 -19 -0007 -00

S l i d e 2 January 2019 doc. : 15 -19 -0007 -00 -004 z. Rationale • IEEE 802. 15. 4 a UWB recap: RF power regulations, DC power consumption, link budget • IEEE 802. 15. 4 z HRP proposal: RF power regulations, DC power consumption, link budget. Is it better now ? Guido Dolmans (Holst Centre / Imec)

January 2019 doc. : 15 -19 -0007 -00 -004 z. IEEE UWB Physical Layers

January 2019 doc. : 15 -19 -0007 -00 -004 z. IEEE UWB Physical Layers Guido Dolmans (Holst Centre / Imec)

January 2019 doc. : 15 -19 -0007 -00 -004 z. IEEE UWB Physical Layers

January 2019 doc. : 15 -19 -0007 -00 -004 z. IEEE UWB Physical Layers Two UWB physical layers are defined by IEEE 802. 15. 4: • High-rate PRF (HRP) UWB. The HRP UWB was first introduced in the IEEE 802. 15. 4 a-2007 amendment • Low-rate PRF (LRP) UWB. The LRP UWB physical layer was introduced in the IEEE 802. 15. 4 f-2012 amendment. The HRP UWB physical layer is capable of precision ranging between devices, whereas the LRP UWB physical layer is not. Experimental results show that the PRF can have a large impact on the frequency of transmission errors, with the 64 MHz PRF generally performing better than the 16 MHz PRF. D. M. King, “Industrial Wireless Control Using Ultra-Wideband Radio”, MSc thesis https: //www. cs. unb. ca/tech-reports /documents/TR 17 -239. pdf Guido Dolmans (Holst Centre / Imec)

January 2019 doc. : 15 -19 -0007 -00 -004 z. IEEE 802. 15. 4

January 2019 doc. : 15 -19 -0007 -00 -004 z. IEEE 802. 15. 4 a: HRP UWB PHY The physical frame is composed of three parts: the SYNC field, the physical header (PHR) and the data field. The SYNC field is further split into two parts: the preamble and start of frame delimiter (SFD). 15. 4 a UWB physical frame structure The SYNC field is transmitted at a base rate of either approximately 1 Msym/s for 16 MHz and 64 MHz PRFs, or 0. 25 Msym/s for the 4 MHz PRF. The PHR is transmitted at either 110 kbps if the data rate is 110 kbps, or 850 kbps for data rates of 850 kbps, 6. 81 Mbps, and 27. 24 Mbps. Guido Dolmans (Holst Centre / Imec)

January 2019 doc. : 15 -19 -0007 -00 -004 z. IEEE 802. 15. 4

January 2019 doc. : 15 -19 -0007 -00 -004 z. IEEE 802. 15. 4 a symbol structure • Ncpb pulses in one burst are sent per symbol (Ncpb = 512, 128, 32, 16, 8, 4, 2, 1) • Number of burst hopping positions in quarter of symbol (Nhop = 2, 8, 32 which leads to mean PRF of 62. 4 MHz, 15. 6 MHz, 3. 9 MHz) Guido Dolmans (Holst Centre / Imec)

January 2019 doc. : 15 -19 -0007 -00 -004 z. IEEE 802. 15. 4

January 2019 doc. : 15 -19 -0007 -00 -004 z. IEEE 802. 15. 4 a: RF power [1 -3] The 12 modes of 15. 4 a with 499. 2 MHz BW are average power limited, except 2 modes: 3. 9 MHz PRF / 110 kbps and 3. 9 MHz PRF / 850 kbps. 3. 9 MHz 15. 6 MHz 62. . 4 MHz 2. 4 2. 3 2. 2 2. 1 1. 4 1. 3 3. 4 3. 3 3. 2 1. 1 3. 1 Nhps: number of hopping positions per symbol Ncpb: number of chips per burst 12 modes of 15. 4 a with 499. 2 MHz bandwidth For a fair DC power consumption analysis let’s take the Iso-curve with Ncpb*Nhps = constant = 512 (includes 15. 4 a modes 1. 2 and 2. 2) Guido Dolmans (Holst Centre / Imec)

January 2019 doc. : 15 -19 -0007 -00 -004 z. IEEE 802. 15. 4

January 2019 doc. : 15 -19 -0007 -00 -004 z. IEEE 802. 15. 4 a power consumption In terms of DC power consumption, IR-UWB transceivers can exploit the fact that impulse type signals are not present all the time. The subsequent blocks used to transmit and receive can be used in a duty cycling mode, contributing less to the average power consumption figure. with dcx being the duty cycle ratio for either start up phase, data phase or leakage phase. Generic state diagram [4], [5] UWB IC implementation Guido Dolmans (Holst Centre / Imec)

January 2019 doc. : 15 -19 -0007 -00 -004 z. Power consumption examples DC

January 2019 doc. : 15 -19 -0007 -00 -004 z. Power consumption examples DC power consumption of transmitter versus achievable PL. , see [1] – [3] - DC power consumption of receiver against achievable distance, see [1] – [3] Best is to stay average power limited, see jumps in figures for transitions from average to peak power limited modes Figures are examples from 90 nm analog-style UWB silicon implementation. A more recent 28/40 nm digital-style silicon implementation would have lower power numbers Guido Dolmans (Holst Centre / Imec)

January 2019 doc. : 15 -19 -0007 -00 -004 z. Most efficient mode of

January 2019 doc. : 15 -19 -0007 -00 -004 z. Most efficient mode of operation [1] - [3] The most efficient mode of operation for a particular path-loss value is a high Nhops / low Ncpb combination. For these modes, the relative startup time is larger but the total duration of the transmission of the pulses is reduced from 24. 9 μs to 2. 2 μs as shown in the table. Guido Dolmans (Holst Centre / Imec)

January 2019 doc. : 15 -19 -0007 -00 -004 z. HRP 15. 4 z

January 2019 doc. : 15 -19 -0007 -00 -004 z. HRP 15. 4 z parameters MIM was agreed at 64 MHz PRF Doc 15 -18 -0375 -00 -004 z captures this consensus Sept 2018: 15 -18 -0477 -00 -004 z-hrp-uwb-phy-enhanced-modeconsensus. pptx Device should support: PRF 128 MHz data modulation schemes The base bit rate supported with this PRF shall be ~7 Mb/s This shall be based on a 4 ns spacing with BPSK, using 8 pulses per coded bit and a 32 ns guard interval in each half-symbol In 15. 4 a terminology this would mean : Ncpb: 8 pulses per bit Nhops = peak PRF / mean PRF = 499. 2 MHz / 64 MHz = 6 - 8 Nhops = peak PRF / mean PRF = 499. 2 MHz / 128 MHz = 3 - 4 The last one is not the most efficient mode of operation for a particular path-loss value since it is not a high Nhops / low Ncpb combination Guido Dolmans (Holst Centre / Imec)

January 2019 doc. : 15 -19 -0007 -00 -004 z. Conclusions • HRP: Low

January 2019 doc. : 15 -19 -0007 -00 -004 z. Conclusions • HRP: Low number of hops (Nhops) and low number of chips per burst (Ncpb) will results in an average power limited system • HRP: Mean PRF of 128 MHz low number of hops. For low-power consumption, a low number of hops is not optimal to achieve a certain link budget. More investigation is recommended to find the most lowpower UWB burst grouping embedded in a physical frame structure while maximizing the link budget. • LRP: Low PRF will result in a peak power limited system. Guido Dolmans (Holst Centre / Imec)

January 2019 doc. : 15 -19 -0007 -00 -004 z. References [1] H. W.

January 2019 doc. : 15 -19 -0007 -00 -004 z. References [1] H. W. Pflug, D. Neirynck, J. Romme, K. Philips, and H. de Groot, “UWB pulse amplitude estimation method for IEEE 802. 15. 4 a, ” Ultra- Wideband (ICUWB), 2010 IEEE International Conference on, vol. 1, pp. 1 – 4, 2010. [2] H. Pflug, J. Romme, K. Philips, and H. de Groot, “Method to estimate impulse-radio ultra-wideband peak power” Microwave Theory and Techniques, IEEE Transactions on, vol. 59, no. 4, pp. 1174 – 1186, april 2011. [3] H. Pflug, J. Romme, K. Philips, and H. de Groot, “Impulse Radio Ultra-Wideband DC Power Modelling”, Ultra-Wideband (ICUWB), 2011 IEEE Internal Conference on, pp. 507 -511, 2011 [4] X. Wang, Y. Yu, B. Busze, H. Pflug, A. Young, X. Huang, C. Zhou, M. Konijnenburg, K. Philips, and H. D. Groot, “A meterrange UWB transceiver chipset for around the- head audio streaming, ” in ISSCC 2012, pp. 449– 451. [5] X. Wang, K. Philips, C. Zhou, B. Busze, H. Pflug, A. Young, J. Romme, P. Harpe, S. Bagga, S. D’Amico, M. De Matteis, A. Baschirotto, and H. de Groot, “A high-band IR-UWB chipset for real-time duty cycled communication and localization systems, ” in Solid State Circuits Conference (A-SSCC), 2011 IEEE Asian, nov. 2011, pp. 381 – 384. . Guido Dolmans (Holst Centre / Imec)