January 2005 doc IEEE 802 15 05 0022

  • Slides: 21
Download presentation
January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a Project: IEEE

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a Project: IEEE P 802. 15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: M-ary Code Shift Keying/Binary PPM (MCSK/BPPM) Based Impulse Radio Date Submitted: January 2005 Source: [Dong In Kim (1), Serhat Erküçük (1), Kyung Sup Kwak (2)] Company: [(1) Simon Fraser University, (2)UWB-ITRC, Inha University] Address: [(1) School of Engineering Science, 8888 University Drive, Burnaby, BC V 5 A 1 S 6, Canada (2) 253 Yonghyun-Dong, Nam-Gu, #401, Venture Bldg. Incheon, 402 -751 Korea] Voice: [+1 (604) 291 -3248], Fax: [(1) +1 (604) 291 -4951 (2) +82 -32 -876 -7349] E-Mail: [(1) dikim@sfu. ca (2) kskwak@inha. ac. kr] Abstract: [Proposed modulation format increases the ranging and location capability of time hopping impulse radios] Purpose: [Proposal for the IEEE 802. 15. 4 a standard] Notice: This document has been prepared to assist the IEEE P 802. 15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P 802. 15. Submission Slide 1 D. I. Kim, S. Erküçük, K. S. Kwak

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a Proposal for

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a Proposal for IEEE 802. 15. 4 Alternate PHY M-ary Code Shift Keying/Binary PPM (MCSK/BPPM) Based Impulse Radio SFU, Canada & UWB-ITRC, Inha University Republic of Korea Submission Slide 2 D. I. Kim, S. Erküçük, K. S. Kwak

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a Contents •

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a Contents • • TG 4 a Requirements MCSK/BPPM PHY TX Structure TH Code Assignment Transceiver Architecture Information Rate Location Accuracy Conclusion Submission Slide 3 D. I. Kim, S. Erküçük, K. S. Kwak

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a TG 4

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a TG 4 a Requirements 802. 15. 4 a PHY MCSK/BPPM compared to TH-BPPM scalable information rates Better BER performance at the same/higher information rates and lower transmit power high precision ranging/ location Improved ranging/location precision capability low power consumption Lower transmit power at the same/higher information rates and better BER performance low complexity and cost No new circuit is needed / simple transceiver structure *MCSK/BPPM: M-ary Code Shift Keying/Binary Pulse Position Modulation **TH-BPPM: Time Hopping Binary Pulse Position Modulation Submission Slide 4 D. I. Kim, S. Erküçük, K. S. Kwak

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a MCSK/BPPM MCSK:

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a MCSK/BPPM MCSK: M-ary Code Shift Keying BPPM: Binary Pulse Position Modulation TX TH PPM – user #1 1 1 0 1 TH-BPPM t 0 1 user specific TH code only for multiple access MCSK/BPPM – user #1 M=4 TH-BPPM choose a code M user specific TH codes … t 0 1 TH code c 3 Bit time for multiple access and data modulation Submission 110 101 Slide 5 Frame time D. I. Kim, S. Erküçük, K. S. Kwak

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a PHY TX

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a PHY TX Structure (1/2) M user specific TH codes TX - TH codes are periodic with Np - each pulse should be repeated Ns times - Np/Ns=k is an integer Example: MCSK C 2 5 8 7 3 1 4 2 6 t 0 Bit time Frame time BPPM Submission Slide 6 D. I. Kim, S. Erküçük, K. S. Kwak

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a PHY TX

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a PHY TX Structure (2/2) M user specific TH codes TX - TH codes are periodic with Np - each pulse should be repeated Ns times - Np/Ns=k is an integer Information rate vs. BER performance for fixed Ns and varying Np and M Scenario Time domain illustration Info. BER rate performance 2 bits (MCSK) 1 bit (BPPM) Np/Ns same 3 bits (MCSK) M increasing 1 bit (BPPM) M same 3 bits (MCSK) 1 bit (BPPM) Np/Ns increasing Bit time Submission Slide 7 Frame time D. I. Kim, S. Erküçük, K. S. Kwak

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a TH Code

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a TH Code Assignment (1/2) Each user has M user specific TH codes TX sample-long sequence Generation of TH codes – “Case 1: random assignment” NO! For Tf = 100 ns, Tc = 1 ns: 100 slots for multiple access 0 m-sequence: 46 c 2 c 0 20 55 c 3 c 2 c 0 c 1 user #2 user #1 Submission c 3 Slide 8 D. I. Kim, S. Erküçük, K. S. Kwak ?

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a TH Code

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a TH Code Assignment (2/2) Generation of TH codes – “Case 2: no overlapping” user #1 user #2 user #1 no collisions allowed within user codes Submission TX . . . user #k n: number of overlaps Slide 9 D. I. Kim, S. Erküçük, K. S. Kwak

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a General Modulation

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a General Modulation Format TX • • Fixed signal space Increased information rate Extra information Random selection of TH codes Improved spectrum Submission Slide 10 D. I. Kim, S. Erküçük, K. S. Kwak

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a Receiver Structure

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a Receiver Structure - MLSE M RX M template signals 2 M Np/Ns hardware structure computation complexity correlator Submission Slide 11 D. I. Kim, S. Erküçük, K. S. Kwak

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a Information Rate

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a Information Rate (1/3) TH-BPPM Ns = 2, M=1 A Info. rate Rs 0 MCSK/BPPM “Constant Energy/Bit” Constraint Ns = 2, Np=2, M=2 MCSK/BPPM “Constant Power” Constraint Ns = 2, Np=2, M=2 R 2 A’ 2 R 0 2 A’ MCSK/BPPM (same info. rate) “Constant Power” Constraint Ns = 2, Np=2, M=2 R 2 0 can be adjusted to achieve higher information rate at lower transmit power and still maintain better BER performance at the same time Submission Slide 12 D. I. Kim, S. Erküçük, K. S. Kwak

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a Information Rate

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a Information Rate (2/3) A 0 A’=2 A MCSK/BPPM “Constant Power” Constraint for Ns = 1, M=8 Scalable info. rates 4 R R 0 BER performance (wrt TH-BPPM) - increased SNR - reduced collusions - no processing gain - not much improvement A 0 A’=1. 58 A 2. 5 R R 0 A’=1. 41 A - increased SNR - reduced collusions - processing gain - improved BER - TX power can be lowered - info rate can be increased 2 R R 0 Submission Slide 13 D. I. Kim, S. Erküçük, K. S. Kwak

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a Information Rate

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a Information Rate (3/3) “Constant Power” Constraint Improved performance at the same information rate for M=8 Submission Slide 14 D. I. Kim, S. Erküçük, K. S. Kwak

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a Location Accuracy

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a Location Accuracy MCSK/BPPM “Constant Power” Constraint Procedure Result Step 0 Initial conditions for TH-BPPM R 0 (information rate); BER 0 (performance) TX 0 (power) Step 1 Increase M Step 2 Increase Np/Ns BER 2 may or may not be less than BER 0 Step 3 Increase T’f BER 3 may or may not be less than BER 0 Step 4 Comment Increased frame time with longer observation period, higher information rate, better BER performance and lower transmit power Increase A’ Accurate Ranging/Location Submission Slide 15 D. I. Kim, S. Erküçük, K. S. Kwak

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a Conclusion •

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a Conclusion • MCSK/BPPM provides: increased information rate Simultaneously! lower transmit power better BER performance improved spectral characteristics • MCSK/BPPM is capable of: IEEE 802. 15. 4 a PHY information rate scalability location/ranging accuracy Submission Slide 16 D. I. Kim, S. Erküçük, K. S. Kwak

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a Back-up Slides

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a Back-up Slides Submission Slide 17 D. I. Kim, S. Erküçük, K. S. Kwak

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a MCSK/BPPM “Constant

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a MCSK/BPPM “Constant Power” Constraint Submission Slide 18 D. I. Kim, S. Erküçük, K. S. Kwak

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a MCSK/BPPM “Constant

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a MCSK/BPPM “Constant Energy/Bit” Constraint Submission Slide 19 D. I. Kim, S. Erküçük, K. S. Kwak

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a Effects of

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a Effects of TH Code Design on the Performance MCSK/BPPM “Constant Power” Constraint Submission Slide 20 D. I. Kim, S. Erküçük, K. S. Kwak

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a TH Code

January 2005 doc. : IEEE 802. 15 -05 -0022 -01 -004 a TH Code Spectrum of: a) TH-BPPM, Np=10 b) ideal MCSK/BPPM, Np c) realistic MCSK/BPPM Fig. a. TH-BPPM Fig. b. ideal MCSK/BPPM Submission Fig. c. realistic MCSK/BPPM Slide 21 D. I. Kim, S. Erküçük, K. S. Kwak