Is Overlay Error More Important Than Interconnect Variations

  • Slides: 34
Download presentation
Is Overlay Error More Important Than Interconnect Variations in Double Patterning Kwangok Jeong: ECE

Is Overlay Error More Important Than Interconnect Variations in Double Patterning Kwangok Jeong: ECE Dept. , UC San Diego Andrew B. Kahng: ECE and CSE Dept. , UC San Diego Rasit O. Topaloglu: GLOBALFOUNDRIES, Inc. UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009 1

Outline • Traditional BEOL Variation and Process • Double Patterning Lithography (DPL) • Overlay

Outline • Traditional BEOL Variation and Process • Double Patterning Lithography (DPL) • Overlay Error in Double Patterning • TCAD-Based Analysis • Design-Level Analysis • Conclusions UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009 2

Outline • Traditional BEOL Variation and Process • Double Patterning Lithography (DPL) • Overlay

Outline • Traditional BEOL Variation and Process • Double Patterning Lithography (DPL) • Overlay Error in Double Patterning • TCAD-Based Analysis • Design-Level Analysis • Conclusions UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009 3

Traditional BEOL Variation and Process • Sources of variation: • Metal/dielectric densitydependent, systematic •

Traditional BEOL Variation and Process • Sources of variation: • Metal/dielectric densitydependent, systematic • Random process variation • Results of variation • Width (W) variation • Metal height (H) variation • Dielectric thickness (D) variation • Traditional backend of the line (BEOL) Process MATERIALS: Resist Dielectric STEPS: coating Mask exposure M+1 etch W H M D M-1 Copper Cu filling UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009 4

Outline • Traditional BEOL Variation and Process • Double Patterning Lithography (DPL) • Overlay

Outline • Traditional BEOL Variation and Process • Double Patterning Lithography (DPL) • Overlay Error in Double Patterning • TCAD-Based Analysis • Design-Level Analysis • Conclusions UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009 5

Double Patterning Lithography • Double Patterning Lithography (DPL) • Pattern-doubling: ‘ 2 X-resolution’ lithography

Double Patterning Lithography • Double Patterning Lithography (DPL) • Pattern-doubling: ‘ 2 X-resolution’ lithography with traditional ‘ 1 X-resolution’ equipment Resist Dielectric Mask 1 1 X 1 st Exposure Mask 2 1 X 2 nd Exposure 1 X-resolution 2 X-resolution • Options for double patterning lithography • Process: Double Exposure (DE) / Double Patterning (DP) / Spacer Double Patterning (SDP) • Resist-type: Positive-tone / Negative tone • Target Feature: Line / Spacing UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009 6

Double Patterning Lithography Options • Double Exposure • Double Patterning • Spacer-DP Target layer

Double Patterning Lithography Options • Double Exposure • Double Patterning • Spacer-DP Target layer Litho-etch 2 nd Litho-etch mask hardmask • Photoresist Litho-etch & Spacer Formation 1 st positive resist negative resist Cu Dielectric Etch Poly Spacer • Target Feature (a) Spaces (b) Lines (a) Positive-tone (b) Negative-tone UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009 7

Outline • Traditional BEOL Variation and Process • Double Patterning Lithography (DPL) • Overlay

Outline • Traditional BEOL Variation and Process • Double Patterning Lithography (DPL) • Overlay Error in Double Patterning • TCAD-Based Analysis • Design-Level Analysis • Conclusions UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009 8

Introduction to the Variability in DPL • Overlay error • Alignment metric • Causes:

Introduction to the Variability in DPL • Overlay error • Alignment metric • Causes: Mask 1 • mask misalignment, • material stress-impacted Mask 2 deformations, S • litho/etch-impacted Reference S topography, Indirect • lens aberration, etc. alignment • Results in: • Width variation • Space (or pitch) variation C c C g Capacitance variation S S Direct alignment • Indirect: • Two DPL masks aligned to a reference layer • Error: • Direct: • Second DPL mask aligned to the first DPL mask • Error: UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009 9

Overlay Error in Various DPL Options • Impact on interconnect parameter in DPL options

Overlay Error in Various DPL Options • Impact on interconnect parameter in DPL options • P (pitch), W (width), W’ W W”, P’ P P’’ S 1 S 2 1 W W P’ 2 1 1 2 1 W’’ W’ P’’ P Positive DE/DP SPACE 2 P 1 S/2 Negative DE/DP WIDTH S S 1 S S 2 1 W’’ W P 2 1 P Positive SDP WIDTH & SPACE 1 2 1 W’ W’ P’’ 2 1 P’ Negative SDP WIDTH & SPACE UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009 10

Mask Coloring and Layout Examples in DPL • Mechanism of misalignment-induced variation 2 4

Mask Coloring and Layout Examples in DPL • Mechanism of misalignment-induced variation 2 4 6 1 Coloring 6 3 5 Original patterns 1 S 6 Patterns 1 3 Patterns 2 (a) DE and DP Process Dummy for pattern 6 2 4 S 2 5 3 5 Original patterns 1 6 1 3 5 4 Spacer (gray) Narrow space a b W 1 35 6 Coloring Spacer formation (Large spacer) Trim & repair (dark gray) W” (b) SDP Process UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009 11

Outline • Traditional BEOL Variation and Process • Double Patterning Lithography (DPL) • Overlay

Outline • Traditional BEOL Variation and Process • Double Patterning Lithography (DPL) • Overlay Error in Double Patterning • TCAD-Based Analysis • Design-Level Analysis • Conclusions UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009 12

TCAD-Based Analysis Setup • Test structure M+1 layer S M layer D W H

TCAD-Based Analysis Setup • Test structure M+1 layer S M layer D W H M-1 layer • Design of experiments (DOE) • Full combinations of W, H, D and S • For all DE/DP/SDP with positive/negative-tone resist • 3 variation: We assume 20% of nominal value D: dielectric height W: line width H: line height S: overlay shift 1. for (i = -3 ; i 3 ; i=i+1) { 2. for (j = -3 ; j 3 ; j=j+1) { 3. for (k = -3 ; k 3 ; k=k+1) { 4. for (l = -3 ; l 3 ; l=l+1) { 5. W=Wnom + i W 3 6. H= Hnom + j H 3 7. D= Dnom + k D 3 8. S = Snom + l S 3 9. run field solver over parameterized structure}}} 8. Find nominal and worst-case capacitance UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009 13

TCAD-Based Analysis Results • Overlay vs. width vs. height Capacitance (a. F/um) • Indirect

TCAD-Based Analysis Results • Overlay vs. width vs. height Capacitance (a. F/um) • Indirect alignment shown: • • Impact of overlay: 0 ~ 2. 4% of C-total Impact of width: -13% ~ 10% of C-total Impact of height: -32% ~ 18% of C-total Impact of indirect alignment ~ 2 x direct alignment UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009 14

Outline • Traditional BEOL Variation and Process • Double Patterning Lithography (DPL) • Overlay

Outline • Traditional BEOL Variation and Process • Double Patterning Lithography (DPL) • Overlay Error in Double Patterning • TCAD-Based Analysis • Design-Level Analysis • Conclusion UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009 15

Design-Level Analysis Flow • Overlay-aware extraction flow 1. Design GDS 2. Split GDS Non-DPL

Design-Level Analysis Flow • Overlay-aware extraction flow 1. Design GDS 2. Split GDS Non-DPL layers Base GDS Sub-GDS 1 Sub-GDS 2 AES core with Nan. Gate 45 nm Tech. ILP-based min cost coloring (Kahng et al. ICCAD 08) TOP. GDS Initial GDS 3. Pattern Decomposition Sub-GDS 1 -1 Coloring and Splitting Sub-GDS 1 -2 Sub-GDS 2 -1 4. Shift and Merge (Cadence Virtuoso) Sub-GDS 2 -2 5. Resize and Extraction (Synopsys Hercules, Star-RCXT) Shifting and Merging TOP. GDS Resizing UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009 16

Design-Level Analysis DOE • Design of Experiments for DE/DP with DA 1. foreach layer

Design-Level Analysis DOE • Design of Experiments for DE/DP with DA 1. foreach layer { M 2, M 3, M 4, M 5 } 2. decompose layer into layermask 1 and layermask 2 3. foreach S { -3 /2, -2 /2, - /2, 0, /2, 2 /2, 3 /2} 4. shift layermask 1 by S 5. shift layermask 2 by –S 6. end 7. layermask 1 + layermask 2 8. foreach W { -3 /2, -2 /2, - /2, 0, /2, 2 /2, 3 /2} 9. resize layer by W 10. end 11. merge with other layers 12. RC-Extraction and Timing Analysis 13. end UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009 17

Impact on Capacitance Variation • Total interconnect capacitance: maximum C(%) • Among top 20%

Impact on Capacitance Variation • Total interconnect capacitance: maximum C(%) • Among top 20% high capacitance nets • Impact of overlay < impact of width Overlay Width Min -7. 7% -22. 2% -3 Avg 1. 4% 4. 7% Max 9. 2% 7. 1% Min -7. 3% -3. 6% +3 Avg 1. 4% 5. 3% Max 9. 7% 28. 6% • Sum of capacitance in the most critical path • Critical path has short interconnects impact of BEOL variation significantly reduces • Impact of overlay < impact of width Overlay Width Interconnect only Min Max -0. 08% 0. 47% -1. 87% 2. 59% Interconnect + Gate Min Max -0. 04% 0. 25% -0. 99% 1. 38% UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009 18

Impact on Crosstalk-Induced Delay • Maximum coupling induced delay change • Prime. Time-SI (Synopsys)

Impact on Crosstalk-Induced Delay • Maximum coupling induced delay change • Prime. Time-SI (Synopsys) is used to find a net that is mostly affected due to crosstalk • Temporal/functional filtering is performed • Selected net structure M 2 segment: 1. 604 um M 3 segment: 0. 78 um M 4 segment: 14. 788 um • A net with relatively small length (~17 um) can have >10% delay changes due to overlay error Overlay Width Cc (p. F) Cg (p. F) @Min @Max 1. 842 1. 863 1. 089 1. 053 1. 840 1. 906 1. 089 1. 120 Delay Min Max -0. 47% 13. 1% -0. 82% 15. 4% Capacitance when Delay is maximum Capacitance when Delay is minimum UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009 19

Impact on Timing • Longest path and total negative slack (TNS) • Impact of

Impact on Timing • Longest path and total negative slack (TNS) • Impact of overlay << impact of width • Longest path delay changes negligibly • However, overall timing (TNS) can change significantly Longest path delay Min Max -0. 06% 0. 98% -1. 22% 2. 00% Total Negative Slack (ns) Overlay Width TNS Min 3. 2% -34. 3% Max 3. 8% 49. 4% -60 -50 -40 -30 -20 Overlay Width -10 0 -3 s -2 s -1 s 0 s 1 s 2 s 3 s Interconnect variation UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009 20

Outline • Traditional BEOL Variation and Process • Double Patterning Lithography (DPL) • Overlay

Outline • Traditional BEOL Variation and Process • Double Patterning Lithography (DPL) • Overlay Error in Double Patterning • TCAD-Based Analysis • Design-Level Analysis • Conclusions UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009 21

Conclusions • We provide a variational interconnect analysis technique for double patterning lithography •

Conclusions • We provide a variational interconnect analysis technique for double patterning lithography • We analyze interconnect variations due to overlay error in DPL • We augment previous work by providing both interconnect and chip-level RCextraction framework reflecting interconnect variation in a 45 nm DPL process • We compare the impact of overlay error with traditional interconnect variations • Summary of observations • Indirect alignment results in higher variation than direct alignment • In most analysis, impact of traditional variation source ( width) is larger than that of overlay error, however, overlay error is additive and non-negligible • Overlay error can cause up to 10% capacitance variation and 13% increase of crosstalk-induced delay • Ongoing/Future Work • Impact in the presence of metal fills • More in-depth analysis or remaining DPL process options • Process sensitivity analysis UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009 22

BACKUP UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009

BACKUP UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009 23

Misalignment Under M 1 Layer (Standard-Cell) • Standard cell structure Original • Assumptions P

Misalignment Under M 1 Layer (Standard-Cell) • Standard cell structure Original • Assumptions P 1 P 2 (a) M C BASE (b) • There exist a reference coordinate to measure misalignment • 10 nm misalignment is a maximum displaced distance from the reference coordinate • Possible moves • • Poly 1: left 10 nm (L) / 0 nm (C) /right 10 nm (R) Poly 2: left 10 nm (L) / 0 nm (C) /right 10 nm (R) M 1: left 10 nm (L) / 0 nm (C) /right 10 nm (R) Contact: left 10 nm (L) / 0 nm (C) /right 10 nm (R) • All Combinations = 3*3*3*3 = 81 cases • Naming convention for each testcase • P 1{direction}_P 2{direction}_C{direction}_M{direction} • E. g. , “P 1 C_P 2 L_CC_MC” means even gates move lef t by 10 nm UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009 24

Experimental Results on Standard Cell RED: Original. Blue: Shift one set of gates Green:

Experimental Results on Standard Cell RED: Original. Blue: Shift one set of gates Green: Shift M 1 and Cont. (same direction) Poly 1 (-10 nm) Rise Delay (S) Poly 2 (-10 nm) Poly 2 (+10 nm) Poly 1 (0 nm) M 1 (-10 nm) Contact (-10 nm) (+10 nm) (-10 nm) 1. 302 E-10 1. 307 E-10 Contact (0 nm) 1. 307 E-10 Contact (+10 nm) 1. 307 E-10 Contact (-10 nm) 1. 338 E-10 Contact (+10 nm) 1. 338 E-10 M 1 (0 nm) 1. 298 E-10 1. 303 E-10 1. 335 E-10 M 1 (+10 nm) 1. 299 E-10 1. 304 E-10 1. 335 E-10 M 1 (-10 nm) 1. 286 E-10 1. 291 E-10 1. 290 E-10 1. 291 E-10 1. 296 E-10 1. 295 E-10 M 1 (0 nm) 1. 286 E-10 1. 290 E-10 1. 295 E-10 1. 294 E-10 M 1 (+10 nm) 1. 282 E-10 1. 283 E-10 1. 286 E-10 1. 291 E-10 M 1 (-10 nm) 1. 274 E-10 1. 278 E-10 1. 282 E-10 1. 281 E-10 M 1 (0 nm) 1. 273 E-10 1. 277 E-10 1. 281 E-10 1. 280 E-10 1. 281 E-10 M 1 (+10 nm) 1. 273 E-10 1. 276 E-10 1. 280 E-10 Poly 1 (-10 nm) Rise Delay Variation (%) Poly 2 (-10 nm) Poly 2 (+10 nm) Poly 1(+10 nm) Poly 1 (0 nm) Poly 1(+10 nm) Contact (-10 nm) Contact (0 nm) Contact (+10 nm) Contact (-10 nm) Contact (+10 nm) M 1 (-10 nm) 0. 93 1. 32 3. 72 M 1 (0 nm) 0. 62 1. 01 3. 49 M 1 (+10 nm) 0. 70 1. 09 3. 49 M 1 (-10 nm) -0. 31 0. 08 0. 00 0. 08 0. 47 0. 39 M 1 (0 nm) -0. 31 0. 00 0. 39 0. 31 M 1 (+10 nm) -0. 62 -0. 54 -0. 31 0. 08 M 1 (-10 nm) -1. 24 -0. 93 -0. 62 -0. 70 M 1 (0 nm) -1. 32 -1. 01 -0. 70 -0. 78 -0. 70 M 1 (+10 nm) -1. 32 -1. 09 -0. 78 UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009 25

DPL Options • Double Exposure • Double Patterning Resist Hardmask Target layer Resist Target

DPL Options • Double Exposure • Double Patterning Resist Hardmask Target layer Resist Target layer Mask 1 Resist Hardmask Buffer oxide Hardmask Target layer Mask 1 1 st Litho-etch Exposure Mask 2 2 nd • Spacer-DP Exposure 2 nd Spacer formation • Printed Feature mask Oxide depo. CMP 2 nd etch mask positive resist negative resist Dielectric positive resist Dielectric Poly After exposure & etch Cu interconnect After Cu filling (a) Positive-tone 1 st Litho-etch Spacer removal • Photoresist Mask Poly (b) Negative-tone (a) Spaces (Trench-First) (b) Lines UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009 26

Impact of Overlay in Positive DE/DP mask 1 mask 2 (misaligned to left) Positive

Impact of Overlay in Positive DE/DP mask 1 mask 2 (misaligned to left) Positive photoresist Dielectric After exposure + etch After filling Cu Cu S 1 S 2 1 W W P’ 2 1 P’’ UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009 27

Impact of Overlay in Negative DE/DP mask 1 mask 2 (misaligned to left) Negative

Impact of Overlay in Negative DE/DP mask 1 mask 2 (misaligned to left) Negative photoresist Dielectric After exposure + etch After filling Cu S 1 Cu S 2 1 W’’ W’ P 2 P 1 S/2 UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009 28

Impact of Overlay in Positive SDP Primary patterns Spacers (act as if masks) (kind

Impact of Overlay in Positive SDP Primary patterns Spacers (act as if masks) (kind of) Positive photoresist Dielectric After exposure + etch After filling Cu Cu S S 1 2 1 W’’ W P 2 1 P UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009 29

Impact of Overlay in Positive SDP Primary patterns Spacers (act as if masks) (kind

Impact of Overlay in Positive SDP Primary patterns Spacers (act as if masks) (kind of ) Negative photoresist Dielectric After exposure + etch After filling Cu Cu S S 1 2 1 W’ W’ P’’ 2 1 P’ UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009 30

Electrical Impacts: Capacitance Variation 15 10 5 0 -5 -10 Max increase Mean Max

Electrical Impacts: Capacitance Variation 15 10 5 0 -5 -10 Max increase Mean Max decrease E/ D P- P SD N P -S P- DP D E N /DP -D E/ D P- P SD N P -S D P N P- -D E/ D P -15 D Capacitance Variation (%) • Overlay error can cause more than +/- 10% capacitance variation within a die • This variation must be back-annotated to timing analysis to reduce unnecessary guardbanding M 2 M 3 M 4 M 5 UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009 31

M 2 |S|/2 M 4 |S| P-DE/DP |S|/2 N-DE/DP |S|/2 P-SDP |S|/2 N-SDP UCSD

M 2 |S|/2 M 4 |S| P-DE/DP |S|/2 N-DE/DP |S|/2 P-SDP |S|/2 N-SDP UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009 32

Maximum Crosstalk Induced Delay • A net has maximum crosstalk-induced delay Crosstalk Delay Variation

Maximum Crosstalk Induced Delay • A net has maximum crosstalk-induced delay Crosstalk Delay Variation (%) • SDP shows more sensitivity tighten overlay spec • P-DE/DP shows least sensitivity lessen overlay spec M 4 12% P-DE/DP 10% N-DE/DP P-SDP N-SDP 8% 6% 4% 2% 0% |S|/2 1 2 3 P-DE/DP M 2 N-DE/DP M 4 M 2 w/o fill M 4 P-SDP M 2 N-SDP M 4 M 2 w/o fill M 4 w/o metal fill w/ metal fill July 26 2009 UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, 33

Total Negative Slack Variation Normalized TNS (%) • SDP, especially for lower layer (smaller

Total Negative Slack Variation Normalized TNS (%) • SDP, especially for lower layer (smaller feature), shows more sensitivity tighter overlay spec 1, 5 1, 4 1, 3 1, 2 1, 1 1, 0 0, 9 0, 8 P-DE/DP N-DE/DP P-SDP N-SDP 1 2 3 4 5 6 7 8 UCSD VLSI CAD Laboratory / GLOBALFOUNDRIES, Inc. - SLIP Workshop, July 26 2009 34