IP Next Generation IPv 6 what why when

  • Slides: 16
Download presentation
IP Next Generation (IPv 6) • • • what? why? when? IPv 6 5

IP Next Generation (IPv 6) • • • what? why? when? IPv 6 5 A 7 CE 1

Why IPng? • the limited availability of IPv 4 addresses – classless routing is

Why IPng? • the limited availability of IPv 4 addresses – classless routing is the way to the 21 st century • routing is not hierarchical – lots of routers, network structures are complicated • awkward address management in large networks – the fight for space between the subnet bits and host bits • no obligatory data security features IPv 6 5 A 7 CE 2

Simple CLNP The Run for the IPng TUBA IP Encaps IPAE CNAT PIP Nimrod

Simple CLNP The Run for the IPng TUBA IP Encaps IPAE CNAT PIP Nimrod SIPP SIP TP/IX 1992 CATNIP 1993 1994 IPv 6 5 A 7 CE 3

IPv 6 (SIPP-16) • • • some of the header fields omitted new features

IPv 6 (SIPP-16) • • • some of the header fields omitted new features with new headers hierarchical addresses – so many that in the early stages only a minor portion of the address space is reserved – IPv 4, multicast and anycast addresses – “plug and play” for workstations • flow labels and priority – to support the Qo. S features IPv 6 5 A 7 CE 4

SIPP 16 Header 0 identification time to live 31 service version hdr length IPv

SIPP 16 Header 0 identification time to live 31 service version hdr length IPv 4: 20 bytes + options (rare) total length flags protocol fragment offset header checksum source address destination address • source routing IPv 6: 40 bytes + options (common) 15 16 additional parameters 0 • hop-by-hop option • source routing • fragmentation • tunnelling • authentication/encryption filler 15 16 version class payload length 31 flow label next header max hops source address (128 bits) destination address (128 bits) next header option specific data n bytes IPv 6 5 A 7 CE 5

Important when Assigning Addresses • the encoding of topological information • geographical information •

Important when Assigning Addresses • the encoding of topological information • geographical information • mesh structures, multi-homing • methods of assigning host numbers • growing the hierarchy • multicast addresses • addresses for mobile hosts • other protocols (also IPv 4) IPv 6 5 A 7 CE 6

IPv 6 Addresses FEDC: BA 98: 7654: 3210: FEDC: BA 98: 7654: 3210 x:

IPv 6 Addresses FEDC: BA 98: 7654: 3210: FEDC: BA 98: 7654: 3210 x: : y the area between filled with zeroes : : a. b. c. d the encoding of an IPv 4 address : : 0 : : 1 an undefined address “myself”, loopback FE 80: : interface ID a network separated by routers (link-local) FEC 0: : subnet: interface ID internal for an organization (site-local) FF. . . FF 02: : 1 FF 02: : 2 multihost address equivalent to broadcast; all hosts all routers (within a network) IPv 6 5 A 7 CE 7

(Possible) IPv 6 Internet Addresses 128 112 104 001 TLA RES 80 NLA* 64

(Possible) IPv 6 Internet Addresses 128 112 104 001 TLA RES 80 NLA* 64 0 SLA* • 001, Format Prefix (FP) Interface ID • SLA, Site Level Aggregator – indicates the global hierarchical address – – – • TLA, Top Level Aggregator – – top level network link max. 8 192 organization subnet information several levels if necessary max. 65 536 • Interface ID • NLA, Next Level Aggregator – a teleoperator or a major customer – consists of several n bit fields – max. 16 777 216 (8 bits reserved) – IEEE EUI-64, 64 bits – usually a 48 bit MAC address in EUI-64 format – max. 18 446 744 073 709 551 616 IPv 6 5 A 7 CE 8

Neighbor Discovery • router discovery • prefix discovery • parameter discovery • address determination

Neighbor Discovery • router discovery • prefix discovery • parameter discovery • address determination • next hop determination • address resolution • duplicate address detection • unreachability detection • redirect IPv 6 5 A 7 CE 9

Neighbor Solicitation IPv 6 5 A 7 CE 10

Neighbor Solicitation IPv 6 5 A 7 CE 10

Neighbor Advertisement IPv 6 5 A 7 CE 11

Neighbor Advertisement IPv 6 5 A 7 CE 11

The IPv 4 -> IPv 6 Translation • IPv 4 and/or IPv 6/v 4

The IPv 4 -> IPv 6 Translation • IPv 4 and/or IPv 6/v 4 nodes will not become isolated • at first IPv 6 traffic will be tunnelled • IPv 4 IPv 6 only in tunnels – example: an IPv 6/v 4 compatible firewall host IPv 6/v 4 B IPv 6/v 4 F C E IPv 6/v 4 D IPv 4 G A IPv 6/v 4 IPv 6 5 A 7 CE 13

IPv 6 development subcategories: • IPv 6 • transition • autoconfiguration DNS FTP •

IPv 6 development subcategories: • IPv 6 • transition • autoconfiguration DNS FTP • address allocation TCP • security • routing ICMP IP ? ? ? ? IPv 6 SIPP-16 1995 1996 1997 1998 1999 IPv 6 5 A 7 CE 14

6 bone backbone (LANCS) IPv 6 5 A 7 CE 15

6 bone backbone (LANCS) IPv 6 5 A 7 CE 15

Testing Address Hierarchy IPv 6 5 A 7 CE 16

Testing Address Hierarchy IPv 6 5 A 7 CE 16

Further Information on IPv 6 5 A 7 CE 17

Further Information on IPv 6 5 A 7 CE 17