Invariance Principles in Theoretical Computer Science Ryan O

  • Slides: 41
Download presentation
Invariance Principles in Theoretical Computer Science Ryan O ’Donnell Carnegie Mellon University

Invariance Principles in Theoretical Computer Science Ryan O ’Donnell Carnegie Mellon University

Talk Outline 1. Describe some TCS results requiring variants of the Central Limit Theorem.

Talk Outline 1. Describe some TCS results requiring variants of the Central Limit Theorem. 2. Show a flexible proof of the CLT with error bounds. 3. Open problems and an advertisement.

Talk Outline 1. Describe some TCS results requiring variants of the Central Limit Theorem.

Talk Outline 1. Describe some TCS results requiring variants of the Central Limit Theorem. 2. Show a flexible proof of the CLT with error bounds. 3. Open problems and an advertisement.

Linear Threshold Functions

Linear Threshold Functions

Linear Threshold Functions

Linear Threshold Functions

Learning Theory Thm: [O-Servedio’ 08] Can learn LTFs f in poly(n) time, just from

Learning Theory Thm: [O-Servedio’ 08] Can learn LTFs f in poly(n) time, just from correlations E[f(x)xi]. Key: when all |ci| ≤ ϵ.

Property Testing [Matulef-O-Rubinfeld-Servedio’ 09] Thm: Can test if is ϵ-close to an LTF with

Property Testing [Matulef-O-Rubinfeld-Servedio’ 09] Thm: Can test if is ϵ-close to an LTF with poly(1/ϵ) queries. Key: when all |ci| ≤ ϵ.

Derandomization Thm: [Meka-Zuckerman’ 10] PRG for LTFs with seed length O(log(n) log(1/ϵ)). Key: even

Derandomization Thm: [Meka-Zuckerman’ 10] PRG for LTFs with seed length O(log(n) log(1/ϵ)). Key: even when xi’s not fully independent.

Multidimensional CLT? For when all small compared to

Multidimensional CLT? For when all small compared to

Derandomization+ [Gopalan-O-Wu-Zuckerman’ 10] Thm: PRG for “functions of O(1) LTFs” with seed length O(log(n)

Derandomization+ [Gopalan-O-Wu-Zuckerman’ 10] Thm: PRG for “functions of O(1) LTFs” with seed length O(log(n) log(1/ϵ)). Key: Derandomized multidimensional CLT.

Property Testing+ [Blais-O’ 10] Thm: Testing if is a Majority of k bits needs

Property Testing+ [Blais-O’ 10] Thm: Testing if is a Majority of k bits needs kΩ(1) queries. Key: assuming E[Xi] = E[Yi], Var[Xi] = Var[Yi], and some other conditions. (actually, a multidimensional version)

Social Choice, Inapproximability [Mossel-O-Oleszkiewicz’ 05] Thm: a) Among voting schemes where no voter has

Social Choice, Inapproximability [Mossel-O-Oleszkiewicz’ 05] Thm: a) Among voting schemes where no voter has unduly large influence, Majority is most robust to noise. b) Max-Cut is UG-hard to. 878 -approx. Key: If P is a low-deg. multilin. polynomial, assuming P has “small coeffs. on each coord. ”

Talk Outline 1. Describe some TCS results requiring variants of the Central Limit Theorem.

Talk Outline 1. Describe some TCS results requiring variants of the Central Limit Theorem. 2. Show a flexible proof of the CLT with error bounds. 3. Open problems and an advertisement.

Gaussians Standard Gaussian: G ~ N(0, 1). Mean 0, Var 1. Anti-concentration: Pr[ G

Gaussians Standard Gaussian: G ~ N(0, 1). Mean 0, Var 1. Anti-concentration: Pr[ G ∈ [u−ϵ, u+ϵ] ] ≤ O(ϵ). a + b. G also a “Gaussian”: N(a, b 2) Sum of independent Gaussians is Gaussian: If G ~ N(a, b 2), H ~ N(c, d 2) are independent, then G + H ~ N(a+c, b 2+d 2).

Central Limit Theorem (CLT) X 1, X 2, X 3, … independent, ident. distrib.

Central Limit Theorem (CLT) X 1, X 2, X 3, … independent, ident. distrib. , mean 0, variance σ2,

CLT with error bounds X 1, X 2, …, Xn independent, ident. distrib. ,

CLT with error bounds X 1, X 2, …, Xn independent, ident. distrib. , mean 0, variance 1/n, X 1 + · · · + Xn is “close to” N(0, 1), assuming Xi is not too wacky:

Niceness of random variables Say E[X] = 0, stddev[X] = σ. def: (≥ σ).

Niceness of random variables Say E[X] = 0, stddev[X] = σ. def: (≥ σ). “def”: X is “nice” if eg: not nice: ± 1. N(0, 1). Unif on [-a, a].

Niceness of random variables Say E[X] = 0, stddev[X] = σ. def: (≥ σ).

Niceness of random variables Say E[X] = 0, stddev[X] = σ. def: (≥ σ). def: eg: not nice: X is “C-nice” if ± 1. N(0, 1). Unif on [-a, a].

Berry-Esseen Theorem X 1, X 2, …, Xn independent, ident. distrib. , mean 0,

Berry-Esseen Theorem X 1, X 2, …, Xn independent, ident. distrib. , mean 0, variance 1/n, X 1 + · · · + Xn is ϵ-close to assuming Xi is C-nice, where [Shevtsova’ 07]: Y “ϵ-close” to Z: . 7056 N(0, 1),

General Case X 1, X 2, …, Xn independent, ident. distrib. , mean 0,

General Case X 1, X 2, …, Xn independent, ident. distrib. , mean 0, X 1 + · · · + Xn is ϵ-close to assuming Xi is C-nice, N(0, 1),

Berry-Esseen: How to prove? X 1, X 2, …, Xn indep. , S =

Berry-Esseen: How to prove? X 1, X 2, …, Xn indep. , S = X 1 + · · · + Xn mean 0, ϵ-close to G ~ N(0, 1). 1. “Characteristic functions” 2. “Stein’s method” 3. “Replacement” = think like a cryptographer

Indistinguishability of random variables S “ϵ-close” to G:

Indistinguishability of random variables S “ϵ-close” to G:

Indistinguishability of random variables S “ϵ-close” to G: u

Indistinguishability of random variables S “ϵ-close” to G: u

Indistinguishability of random variables S “ϵ-close” to G: t u

Indistinguishability of random variables S “ϵ-close” to G: t u

Indistinguishability of random variables S “ϵ-close” to G:

Indistinguishability of random variables S “ϵ-close” to G:

Replacement method S “ϵ-close” to G: u δ

Replacement method S “ϵ-close” to G: u δ

Replacement method X 1, X 2, …, Xn indep. , mean 0, S =

Replacement method X 1, X 2, …, Xn indep. , mean 0, S = X 1 + · · · + Xn G ~ N(0, 1) For smooth

Replacement method Hybrid argument X 1, X 2, …, Xn indep. , mean 0,

Replacement method Hybrid argument X 1, X 2, …, Xn indep. , mean 0, S = X 1 + · · · + Xn G = G 1 + · · · + Gn For smooth

Invariance principle X 1, X 2, …, Xn Y 1, Y 2, …, Yn

Invariance principle X 1, X 2, …, Xn Y 1, Y 2, …, Yn indep. , mean 0, Var[Xi] = Var[Yi] = SX = X 1 + · · · + Xn SY = Y 1 + · · · + Yn For smooth

Hybrid argument X 1, X 2, …, Xn, Y 1, Y 2, …, Yn,

Hybrid argument X 1, X 2, …, Xn, Y 1, Y 2, …, Yn, independent, matching means and variances. SX = X 1 + · · · + Xn Def: vs. SY = Y 1 + · · · + Yn Zi = Y 1 + · · · + Yi + Xi+1 + · · · + Xn SX = Z 0, SY = Zn

Hybrid argument X 1, X 2, …, Xn, Y 1, Y 2, …, Yn,

Hybrid argument X 1, X 2, …, Xn, Y 1, Y 2, …, Yn, independent, matching means and variances. Zi = Y 1 + · · · + Yi + Xi+1 + · · · + Xn Goal:

Zi = Y 1 + · · · + Yi + Xi+1 + ·

Zi = Y 1 + · · · + Yi + Xi+1 + · · · + Xn where U = Y 1 + · · · + Yi− 1 + Xi+1 + · · · + Xn. Note: U, Xi, Yi independent. Goal:

− = ∴ by indep. and matching means/variances!

− = ∴ by indep. and matching means/variances!

Variant Berry-Esseen: Say If X 1, X 2, …, Xn & Y 1, Y

Variant Berry-Esseen: Say If X 1, X 2, …, Xn & Y 1, Y 2, …, Yn indep. and have matching means/variances, then

Usual Berry-Esseen: If X 1, X 2, …, Xn indep. , mean 0, Hack

Usual Berry-Esseen: If X 1, X 2, …, Xn indep. , mean 0, Hack u δ

Usual Berry-Esseen: If X 1, X 2, …, Xn indep. , mean 0, Variant

Usual Berry-Esseen: If X 1, X 2, …, Xn indep. , mean 0, Variant Berry-Esseen + Hack Usual Berry-Esseen except with error O(ϵ 1/4)

Extensions are easy! Vector-valued version: Use multidimensional Taylor theorem. Derandomized version: If X 1,

Extensions are easy! Vector-valued version: Use multidimensional Taylor theorem. Derandomized version: If X 1, …, Xm C-nice, 3 -wise indep. , then X 1+···+ Xm is O(C)-nice. Higher-degree version: X 1, …, Xm C-nice, indep. , Q is a deg. -d poly. , then Q(X 1, …, Xm) is O(C)d-nice.

Talk Outline 1. Describe some TCS results requiring variants of the Central Limit Theorem.

Talk Outline 1. Describe some TCS results requiring variants of the Central Limit Theorem. 2. Show a flexible proof of the CLT with error bounds. 3. Open problems, advertisement, anecdote?

Open problems 1. Recover usual Berry-Esseen via the Replacement method. 2. Vector-valued: Get correct

Open problems 1. Recover usual Berry-Esseen via the Replacement method. 2. Vector-valued: Get correct dependence on test sets K. (Gaussian surface area? ) 3. Higher-degree: improve (? ) the exponential dependence on degree d. 4. Find more applications in TCS.

Do you like LTFs and PTFs? Do you like probability and geometry? Oct. 21

Do you like LTFs and PTFs? Do you like probability and geometry? Oct. 21 -22 (“just before FOCS”) workshop at the Princeton Intractability Center: Analysis and Geometry of Boolean Threshold Functions Diakonikolas! Kane! Meka! Rubinfeld! Servedio! Shpilka! Vempala! And more! http: //intractability. princeton. edu/blog/2010/08/workshop-ltfptf/