Intermolecular Forces rev 121509 Objectives SWBAT Distinguish between

  • Slides: 59
Download presentation
Intermolecular Forces (rev. 12/15/09)

Intermolecular Forces (rev. 12/15/09)

Objectives SWBAT: ¢ Distinguish between different types of intermolecular forces. ¢ Complete a heating

Objectives SWBAT: ¢ Distinguish between different types of intermolecular forces. ¢ Complete a heating or cooling curve calculation. ¢

Intermolecular Forces ¢ Forces that hold solids and liquids together may be ionic or

Intermolecular Forces ¢ Forces that hold solids and liquids together may be ionic or covalent bonds or they may involve a weaker interaction called intermolecular forces. ¢ All of these forces are van der Waals forces

Intermolecular Forces ¢ Generally, the strengths of intermolecular forces are much weaker than intramolecular

Intermolecular Forces ¢ Generally, the strengths of intermolecular forces are much weaker than intramolecular forces (ionic or covalent bonds). ¢ The stronger the attractive force, the higher the boiling or melting points.

¢ The Intermolecular Forces (forces between molecules) are weaker than Intramolecular Forces (The Chemical

¢ The Intermolecular Forces (forces between molecules) are weaker than Intramolecular Forces (The Chemical Bonds within an Individual Molecule).

Types of Intermolecular Attractive Forces ¢ Ion – Dipole Forces ¢ Dipole – Dipole

Types of Intermolecular Attractive Forces ¢ Ion – Dipole Forces ¢ Dipole – Dipole Forces ¢ Hydrogen Bonding ¢ London Dispersion Forces

¢ Dipoles arise from opposite but equal charges separated by a distance. Molecules that

¢ Dipoles arise from opposite but equal charges separated by a distance. Molecules that possess a dipole moment are called Polar molecules (remember the polar covalent bond? ).

Ion-Dipole Forces ¢ ¢ Ion-dipole forces – exist between an ion and the partial

Ion-Dipole Forces ¢ ¢ Ion-dipole forces – exist between an ion and the partial charge on the end of a polar molecule http: //www. chem. purdue. edu/gchelp/liquids/ions. gif

Electrolytes ¢ When salt is dissolved in water, the ions of the salt dissociate

Electrolytes ¢ When salt is dissolved in water, the ions of the salt dissociate from each other and associate with the dipole of the water molecules. This results in a solution called an Electrolyte.

Dipole – Dipole Forces ¢ Dipole-dipole forces – exist between neutral polar molecules, when

Dipole – Dipole Forces ¢ Dipole-dipole forces – exist between neutral polar molecules, when dipoles are close together l l these are weaker than ion-dipole forces The molecules orient themselves to maximize the positive/negative interactions and to minimize the + + and - - interactions. These forces are typically only about 1% as strong as covalent or ionic bonds. These forces rapidly become weaker as the distance between the dipoles increases.

Dipole-Dipole ¢ http: //upload. wikimedia. org/wikipedia/commons/5/59/Dipole-dipole-interaction-in-HCl-2 D. png

Dipole-Dipole ¢ http: //upload. wikimedia. org/wikipedia/commons/5/59/Dipole-dipole-interaction-in-HCl-2 D. png

http: //itl. chem. ufl. edu/2041_f 97/lectures/lec_g. html ¢ ¢ Inductive forces arise from the

http: //itl. chem. ufl. edu/2041_f 97/lectures/lec_g. html ¢ ¢ Inductive forces arise from the distortion of the charge cloud induced by the presence of another molecule nearby. The distortion arises from the electric field produced by the charge distribution of the nearby molecule. These forces are always attractive but are in general shorter ranged than electrostatic forces. If a charged molecule (ion) induces a dipole moment in a nearby neutral molecule, the two molecules will stick together, even though the neutral molecule was initially round and uncharged.

London Dispersion Forces ¢ ¢ ¢ London Dispersion forces: exist primarily between non-polar atoms

London Dispersion Forces ¢ ¢ ¢ London Dispersion forces: exist primarily between non-polar atoms or molecules, (including noble gases) Sometimes called induced dipole-induced dipole attraction. These forces exist between all molecules to some degree.

http: //itl. chem. ufl. edu/2041_f 97/lectures/lec_g. html ¢ Inductive forces that result not from

http: //itl. chem. ufl. edu/2041_f 97/lectures/lec_g. html ¢ Inductive forces that result not from permanent charge distributions but from fluctuations of charge are not called inductive forces at all but are called London Dispersion forces. ¢ These forces are everywhere but are most important in systems that have no other types of molecular stickiness, like the rare gases (rare gases include the noble gases, xenon, krypton and neon). The rare gases may be liquified, and it is dispersion forces that hold the atoms together (no electrostatic or inductive forces exits) ¢

London Dispersion Forces ¢ ¢ ¢ The constant motion of an electron in an

London Dispersion Forces ¢ ¢ ¢ The constant motion of an electron in an atom or molecule can create an instantaneous dipole moment by affecting the electron distribution of a neighboring atom This inter-atomic attraction is relatively weak and short lived. This is the weakest intermolecular force. The strength of these forces increases with increasing molecular mass

London Dispersion Forces ¢ London forces are the attractive forces that cause non-polar substances

London Dispersion Forces ¢ London forces are the attractive forces that cause non-polar substances to condense to liquids and to freeze into solids when the temperature is lowered sufficiently. ¢ Dispersion forces are present between any two molecules (even polar molecules) when they are almost touching (this means they are found in all substances).

London Dispersion Forces http: //itl. chem. ufl. edu/2045/matter/FG 11_005. GIF

London Dispersion Forces http: //itl. chem. ufl. edu/2045/matter/FG 11_005. GIF

London Dispersion Forces ¢ ¢ Dispersion forces are present between all molecules, whether they

London Dispersion Forces ¢ ¢ Dispersion forces are present between all molecules, whether they are polar or nonpolar. Larger and heavier atoms and molecules exhibit stronger dispersion forces than smaller and lighter ones (outer electrons are shielded from nucleus positive charge allowing more interactions). In a larger atom or molecule, the valence electrons are, on average, farther from the nuclei than in a smaller atom or molecule. They are less tightly held and can more easily form temporary dipoles. The ease with which the electron distribution around an atom or molecule can be distorted is called the polarizability.

London Dispersion Forces London dispersion forces tend to be: ¢ stronger between molecules that

London Dispersion Forces London dispersion forces tend to be: ¢ stronger between molecules that are easily polarized. ¢ weaker between molecules that are not easily polarized. ¢

Hydrogen Bonding ¢ Hydrogen bonding – is a special type of intermolecular attraction that

Hydrogen Bonding ¢ Hydrogen bonding – is a special type of intermolecular attraction that exists between the hydrogen atom in a polar bond (particularly an H-F, H-O or H-N bond) and an unshared electron pair on a nearby small electronegative ion or atom (usually an F, O, or N atom on another molecule). l This is a specific type of dipole-dipole force

Hydrogen Bonding https: //vinstan. wikispaces. com/file/view/800 px-Hydrogen-bonding-in-water-2 D. png/46631659/800 px-Hydrogen-bonding-inwater-2 D. png

Hydrogen Bonding https: //vinstan. wikispaces. com/file/view/800 px-Hydrogen-bonding-in-water-2 D. png/46631659/800 px-Hydrogen-bonding-inwater-2 D. png

Hydrogen Bonding ¢ Two factors account for the strengths of these interactions: 1. large

Hydrogen Bonding ¢ Two factors account for the strengths of these interactions: 1. large polarity of the bond 2. close approach of the dipoles (allowed by the very small size of the hydrogen atom)

Hydrogen Bonding ¢ Each attraction is electrostatic in nature, (involving attractions between positive and

Hydrogen Bonding ¢ Each attraction is electrostatic in nature, (involving attractions between positive and negative species) ¢ See Brown and Le. May page 403 for a flow diagram for intermolecular forces.

Polarizability ¢ Polarizability – the ease with which the charge distribution in a molecule

Polarizability ¢ Polarizability – the ease with which the charge distribution in a molecule can be distorted by an external electric field. (see B&L pg. 397) ¢ More polarizable molecules have stronger London Dispersion forces ¢ Strength increases with increasing size occurs between all polar and non-polar molecules

Properties of Liquids viscosity – the resistance of a liquid to flow ¢ The

Properties of Liquids viscosity – the resistance of a liquid to flow ¢ The greater a liquid’s viscosity, the more slowly it flows. ¢ Viscosity decreases with increasing temperature. At higher temperatures, the greater average kinetic energy of the molecules more easily overcomes the attractive forces between molecules. ¢

Surface Tension ¢ ¢ ¢ Surface tension – the energy required to increase the

Surface Tension ¢ ¢ ¢ Surface tension – the energy required to increase the surface area of a liquid by a unit amount. Surface tension is due to an increase in the attractive forces between molecules at the surface of a liquid compared to the forces between molecules in the center, or bulk, of the liquid. This property causes fluids to minimize their surface areas. see Brown and Le. May page 404

Surface Tension ¢ When a liquid is poured onto a solid surface, it tends

Surface Tension ¢ When a liquid is poured onto a solid surface, it tends to bead as droplets, which is a phenomenon that depends on the intermolecular forces. http: //quest. nasa. gov/space/teachers/microgravity/image/66. gif http: //z. about. com/d/physics/1/G/8/0/-/-/Surface. Tension. png

Surface Tension ¢ Although molecules in the interior of the liquid are completely surrounded

Surface Tension ¢ Although molecules in the interior of the liquid are completely surrounded by other molecules, those at the surface are subject to attractions only from the side and from below. The effect of this uneven pull on the surface molecules tends to draw them into the body of the liquid and causes a droplet of liquid to assume the shape that has a minimum surface area (a sphere).

Phase Changes Section Vocab ¢ The melting process for a solid can be referred

Phase Changes Section Vocab ¢ The melting process for a solid can be referred to as fusion. ¢ A heating curve is a plot of the temperature versus the amount of heat added. ¢ A cooling curve is a plot of the temperature versus the amount of heat removed. ¢ Critical temperature is the highest temperature at which a substance can exist as a liquid. ¢ The critical pressure is the pressure required to bring about liquefaction at this critical temperature.

Heating Curve of Water Heat of fusion Heat of vaporization (1) is ice (2)

Heating Curve of Water Heat of fusion Heat of vaporization (1) is ice (2) is ice and liquid water (melting) (3) is liquid water (4) is liquid water and vapor (vaporization) (5) is water vapor http: //www. greatneck. k 12. ny. us/GNPS/SHS/dept/science/Blumberg/worksheets/heating%20 curve%20 and%20 energy_files/i mage 003. jpg

Heat of Fusion ¢ Heat of Fusion (ΔHvap) is the energy required to melt

Heat of Fusion ¢ Heat of Fusion (ΔHvap) is the energy required to melt one mole of a substance at constant temperature.

Heat of Vaporization ¢ Heat of vaporization (ΔHvap) is the energy required to vaporize

Heat of Vaporization ¢ Heat of vaporization (ΔHvap) is the energy required to vaporize one mole of a substance at constant temperature.

Lines on the Graph The horizontal lines of a heating curve represent the heat

Lines on the Graph The horizontal lines of a heating curve represent the heat of fusion and heat of vaporization. ¢ Notice that the temperature doesn’t change during melting or vaporization. ¢ The nearly vertical lines represent the heat required to effect the corresponding temperature change of a single phase. ¢

Heating Curve Diagram http: //library. thinkquest. org/C 006669/media/Chem/img/Graphs/Heat. Cool. gif

Heating Curve Diagram http: //library. thinkquest. org/C 006669/media/Chem/img/Graphs/Heat. Cool. gif

Heating Curve for Water ¢ http: //www. bbc. co. uk/schools/ks 3 bitesize/science/chemistry/physical_changes_4. shtml

Heating Curve for Water ¢ http: //www. bbc. co. uk/schools/ks 3 bitesize/science/chemistry/physical_changes_4. shtml

Cooling Curve www. docbrown. info

Cooling Curve www. docbrown. info

Heating and Cooling Curves We need to look in the textbook to see some

Heating and Cooling Curves We need to look in the textbook to see some heating and cooling curves and how to do the calculations. ¢ See B&L page 406 ¢ Try Sample Exercise 11. 4 and the Practice Exercise ¢

Students ¢ See teacher’s webpage for several heating/cooling curve links ¢ Try http: //chapsipc.

Students ¢ See teacher’s webpage for several heating/cooling curve links ¢ Try http: //chapsipc. wetpaint. com/page/Calculating+Heating+Curve+of+ for an example heating curve calculation Water? t=anon

Phase Diagrams A phase diagram is a graphical way to summarize the conditions under

Phase Diagrams A phase diagram is a graphical way to summarize the conditions under which equilibria exist between the different states of matter. ¢ The diagram also enables us to predict the phase of a substance that is stable at any given temperature and pressure. ¢ See the diagrams B&L page 413 ¢

Phase Diagram for Water www. serc. carlaton. edu

Phase Diagram for Water www. serc. carlaton. edu

The point where three lines intersect in a phase diagram shows the pressure and

The point where three lines intersect in a phase diagram shows the pressure and temperature where the solid, liquid, and vapor all exist in equlibrium. This point, which occurs for water at 0. 01°C (32. 02°F), is known as the triple point. http: //encarta. msn. com/media_461541579/phase_diagram_for_water. html

http: //www. chem. queensu. ca/people/faculty/Mombourquette/First. Yr. Chem/colligative/index. htm

http: //www. chem. queensu. ca/people/faculty/Mombourquette/First. Yr. Chem/colligative/index. htm

On a Phase Diagram You should be able to label: Each phase change (i.

On a Phase Diagram You should be able to label: Each phase change (i. e. sublimation, melting, freezing, etc. ) ¢ Triple point and critical point. ¢ Direction of curves for H 2 O and CO 2 diagrams. ¢

Triple Point The “triple point” is where all three curves intersect on a phase

Triple Point The “triple point” is where all three curves intersect on a phase diagram. ¢ All three phases co-exist at this point. ¢

What is the definition of the term “critical point” on a phase diagram? ¢

What is the definition of the term “critical point” on a phase diagram? ¢

Phase Diagrams Each diagram contains 3 curves. ¢ Each curve represents conditions of temperature

Phase Diagrams Each diagram contains 3 curves. ¢ Each curve represents conditions of temperature and pressure at which the various phases can coexist at equilibrium. ¢

General Phase Diagram http: //images. google. com/imgres? imgurl=http: //kramerslab. tn. tudelft. nl/~rob/Courses/Physics. Of. Fluids/Figures%2

General Phase Diagram http: //images. google. com/imgres? imgurl=http: //kramerslab. tn. tudelft. nl/~rob/Courses/Physics. Of. Fluids/Figures%2 Bmovies/Phase. Diagra m. jpg&imgrefurl=http: //kramerslab. tn. tudelft. nl/~rob/Courses/Physics. Of. Fluids/html-lectures/Lecture 1. 1. html&usg=__kgq. G_Eu. LDsby. FSu. KYNB_JMHTQ=&h=315&w=412&sz=19&hl=en&start=5&tbnid=vu. K 0 Mfhoi 9 N 4 a. M: &tbnh=96&tbnw=125&prev=/images%3 Fq%3 Dphase%2 Bdiagr am%26 gbv%3 D 2%26 hl%3 Den

Phase Diagram ¢ ¢ ¢ On the previous slide see the liquid/gas curve. This

Phase Diagram ¢ ¢ ¢ On the previous slide see the liquid/gas curve. This is the vapor pressure curve. The point on the graph where the vapor pressure is 1 atm is the normal boiling point of the substance. The vapor pressure curve ends at the critical point. Beyond the critical point the liquid and gas phases becomes indistinguishable.

Phase Diagram for Carbon Dioxide http: //serc. carleton. edu/images/research_education/equilibria/h 2 o_phase_diagram__color. v 2. jpg

Phase Diagram for Carbon Dioxide http: //serc. carleton. edu/images/research_education/equilibria/h 2 o_phase_diagram__color. v 2. jpg

Notice the solid/liquid curve on the carbon dioxide phase diagram. ¢ This curve follows

Notice the solid/liquid curve on the carbon dioxide phase diagram. ¢ This curve follows the typical behavior, the melting point increases with increasing pressure. ¢

Phase Diagram for Water

Phase Diagram for Water

Water Phase Diagram Notice the solid/liquid curve on the water phase diagram. ¢ The

Water Phase Diagram Notice the solid/liquid curve on the water phase diagram. ¢ The melting point of water decreases with increasing pressure. ¢ Water is one of a few substances whose liquid form is more compact than its solid form. ¢

Why does ice float? Because ice floats, we can infer that ice must be

Why does ice float? Because ice floats, we can infer that ice must be less dense than water. ¢ If water is frozen in a glass jar, the glass jar breaks. ¢ If a soda can freezes, it will also burst. ¢ From both of the above we infer that the volume of the ice has increased. ¢ Conclusion: The volume of ice must be greater than the same mass of liquid water. Why does the volume increase? ¢

Molecular basis for the Volume Increase of Ice: ¢ ¢ ¢ The normal pattern

Molecular basis for the Volume Increase of Ice: ¢ ¢ ¢ The normal pattern for most compounds is that as the temperature of the liquid increases, the density decreases as the molecules spread out from each other. As the temperature decreases, the density increases as the molecules become more closely packed. This pattern does not hold true for ice as the exact opposite occurs. In liquid water each molecule is hydrogen bonded to approximately 3. 4 other water molecules. In ice each molecule is hydrogen bonded to 4 other molecules.

Compare the structures of Liquid Water and Solid Ice – See Graphic ¢ Notice

Compare the structures of Liquid Water and Solid Ice – See Graphic ¢ Notice the empty spaces within the ice structure, as this translates to a more open or expanded structure. ¢ The ice structure takes up more volume than the liquid water molecules, hence is ¢ less dense than liquid water. ¢

Ice vs Water Structure http: //www. elmhurst. edu/~chm/vchembook/images/122 iceliquid. gif

Ice vs Water Structure http: //www. elmhurst. edu/~chm/vchembook/images/122 iceliquid. gif

Question ¢ Explain why the phase diagram for water is different than the phase

Question ¢ Explain why the phase diagram for water is different than the phase diagram for carbon dioxide.

Ch 11 Problems ¢ 5, 7 -11, 13, 19, 25, 27, 33, 34, 37,

Ch 11 Problems ¢ 5, 7 -11, 13, 19, 25, 27, 33, 34, 37, 40, 47, 48, 52 -54, 56, 57, 62, 65 AP Problems ¢ 2003 #6 ¢ 2005 #8 ¢ 2006 #6 ¢

Vapor Pressure ¢ Vapor Pressure is the partial pressure exerted by a vapor in

Vapor Pressure ¢ Vapor Pressure is the partial pressure exerted by a vapor in a closed system when it is in equilibrium with its liquid or solid phase.